dlilgliltlall

VAX/VMS

System Services
Reference Manual
Order No. AA-D018B-TE

March 1980

This manual describes the VAX/VMS system services. It provides coding con-
ventions, examples of how to use system services, and detailed reference
information on the arguments required by each system service.

VAX/VMS

System Services
Reference Manual
Order No. AA-DO18B-TE

SUPERSESSION/UPDATE INFORMATION: This document superéedes the VAX/VMS
System Services Reference Manual
(Order No. AA-DO18A-TE).

OPERATING SYSTEM AND VERSION: VAX/VMS V02

SOFTWARE VERSION: VAX/VMS V02

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation - maynard, massachusetts

First Printing, August 1978
Revised, March 1980

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation., Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a 1license

and may only be used or copied in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright (:) 1978, 1980 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the wuser's critical evaluation to assist us in
preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0S/8
DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-11
DECCOMM DECSYSTEM-20 TMS-11
ASSIST-11 RTS-8 ITPS-10
VAX VMS SBI
DECnet IAS PDT

DATATRIEVE TRAX

5/80-14

CONTENTS

Page
PREFACE xi
PART I USING SYSTEM SERVICES
CHAPTER 1 INTRODUCTION TO SYSTEM SERVICES 1-1
1.1 WHO CAN USE SYSTEM SERVICES: PRIVILEGE AND
PROTECTION 1-1
l1.1.1 User Privileges and Resource Quotas 1-1
1.1.2 Control by Group Association 1-2
1.1.3 Protection by Access Mode 1-2
1.2 SUMMARY OF VAX/VMS SYSTEM SERVICES 1-3
l1.2.1 Event Flag Services 1-3
1.2.2 AST (Asynchronous System Trap) Services 1-5
1.2.3 Logical Name Services 1-6
1.2.4 Input/Output Services 1-7
1.2.5 Process Control Services 1-10
l1.2.6 Timer and Time Conversion Services 1-13
1.2.7 Condition-Handling Services 1-15
1.2.8 Memory Management Services 1-16
1.2.9 Change Mode Services 1-19
CHAPTER 2 CALLING THE SYSTEM SERVICES 2-1
2.1 MACRO CODING 2-1
2.1.1 Argument Lists 2=2
2.1.2 $name G Form 2-3
2.1.2.1 Specifying Arguments with the $name Macro 2-3
2.1.2.2 Example of $name and $name G Macro Calls 2-4
2.1.2.3 Symbolic Names for Argument List Offsets 2-5
2.,1.2.4 The $nameDEF Macro 2-6
2,1.3 The Sname_S Form 2-6
2.,1.3.1 Specifying Arguments with the $name S Macro 2-6
2.1.3.2 Example of Sname S Macro Call - 2-17
2.1.4 Conventions for Coding Arguments to System
Services 2=-7
2.1.4.1 Conventions for Coding Character String
Arguments ‘ 2-8
2.1.4.2 Conventions for Coding Numeric Values 2-10
2.1.5 Status Codes Returned from System Services 2-11
2.1.5.1 Information Provided by Status Codes 2-11
2.,1.5.2 Testing Return Status Codes 2-12
2.1.5.3 System Messages Generated by Status Codes 2-12
2.1.5.4 Special Return Conditions 2-12
2.2 HIGH-LEVEL LANGUAGE CODING 2-14
2.2.1 Descriptors 2-14
2.2.2 Return Status 2-15
2.2.2.1 Information Provided by Status Codes 2-16
2.2.2.2 Testing the Return Status Code 2-16
2.2.2.3 Special Return Conditions 2-17

iii

CONTENTS

Page
2.2.3 Obtaining Values for Other Symbolic Codes 2-18
2.3 INTERPRETING THE CODING EXAMPLES 2-18
CHAPTER 3 EVENT FLAG SERVICES 3-1
3.1 EVENT FLAG NUMBERS AND EVENT FLAG CLUSTERS 3-1
3.1.1 Specifying Event Flag and Event Flag
Cluster Numbers 3-2
3.2 EXAMPLES OF EVENT FLAG SERVICES 3=-2
3.2.1 Event Flag Waits 3-3
3.3 SETTING AND CLEARING EVENT FLAGS 3-3
3.4 COMMON EVENT FLAG CLUSTERS 3-4
3.5 DISASSOCIATING AND DELETING COMMON EVENT FLAG
CLUSTERS 3-5
3.6 EXAMPLE OF USING A COMMON EVENT FLAG CLUSTER 3-5
3.7 COMMON EVENT FLAG CLUSTERS IN SHARED MEMORY 3-7
3.7.1 Cluster Name 3-8
CHAPTER 4 AST (ASYNCHRONOUS SYSTEM TRAP) SERVICES 4-1
4.1 ACCESS MODES FOR AST EXECUTION 4-2
4.2 ASTS AND PROCESS WAIT STATES 4-3
4.2.1 Event Flag Waits 4-3
4.2.2 Hibernation 4-3
4.2.3 Resource Waits And Page Faults 4-3
4.3 HOW ASTS ARE DECLARED 4-3
4.4 THE AST SERVICE ROUTINE 4-4
4.5 AST DELIVERY 4-5
CHAPTER 5 LOGICAL NAME SERVICES 5-1
5.1 LOGICAL NAMES AND EQUIVALENCE NAMES 5-1
5.2 LOGICAL NAME TABLES 5-2
5.2.1 Logical Name Table Numbers 5-4
5.2.2 Duplication of Logical Names 5-4
5.3 LOGICAL NAME TRANSLATION 5-4
5.3.1 Bypassing Logical Name Tables 5-5
5.3.2 Logical Name and Equivalence Name Format
Conventions 5-5
5.4 RECURSIVE TRANSLATION 5-6
5.5 DELETING LOGICAL NAMES 5-6
CHAPTER 6 INPUT/OUTPUT SERVICES 6-1
6.1 ASSIGNING CHANNELS 6-1
6.2 QUEUING I/0O REQUESTS 6-2
6.3 SYNCHRONIZING I/0O COMPLETION 6-3
6.4 I/0 COMPLETION STATUS 6-5
6.5 SIMPLIFIED FORMS OF THE $QIO MACRO (SQIOW,
SINPUT, SOUTPUT) 6-6
6.6 DEASSIGNING I/0 CHANNELS 6-6
6.7 COMPLETE TERMINAL I/O EXAMPLE =7
6.8 CANCELING I/O REQUESTS 6-10
6.9 DEVICE ALLOCATION 6-10
6.9.1 Implicit Allocation 6-11
6.9.2 Deallocation 6-12
6.10 LOGICAL NAMES AND PHYSICAL DEVICE NAMES 6-12
6.10.1 Device Name Defaults 6-12

iv

CHAPTER

CHAPTER

CHAPTER

NN NN NNNNNNNNNNNNNNNS

[ee]

©o 00 CO 00 CO CO OO O

[(eliNejaNe} o)

e & s & o
O~ OYUT O W

PR IES BN o) We) We W W WU, IS, NG, IS, B SR g - U

N

N

* o o o o o« o
NN N (S0
« o o

e o o
w N~

« o o
W N =

.
—

.
[

.
[

w N

CONTENTS

OBTAINING INFORMATION ABOUT PHYSICAL DEVICES
FORMATTING OUTPUT STRINGS
MAILBOXES
Mailbox Name Format
System Mailboxes
Mailboxes for Process Termination Messages
Mailboxes for System Processes

PROCESS CONTROL SERVICES

SUBPROCESSES AND DETACHED PROCESSES
THE EXECUTION CONTEXT OF A PROCESS
PROCESS CREATION
Defining an Image for a Subprocess to
Execute
Input, Output, and Error Devices for
Subprocesses
Disk and Directory Defaults for Created
Processes
Controlling Resources of Created Processes
Detached Processes
INTERPROCESS CONTROL AND COMMUNICATION
Restrictions on Process Creation and Control
Process Identification
Process Naming within Groups
Obtaining Information about Processes
Techniques for Interprocess Communication
PROCESS HIBERNATION AND SUSPENSION
Process Hibernation
Alternate Methods of Hibernation
Suspension
IMAGE EXIT
Image Rundown Activities
The SEXIT System Service
Exit Handlers
Forced EXit
PROCESS DELETION
The Delete Process System Service
Termination Mailboxes

TIMER AND TIME CONVERSION SERVICES

THE SYSTEM TIME FORMAT
THE CURRENT DATE AND TIME
OBTAINING AN ABSOLUTE TIME IN SYSTEM FORMAT
OBTAINING A DELTA TIME IN SYSTEM FORMAT
TIMER REQUESTS
Canceling Timer Requests
SCHEDULED WAKEUPS
Canceling Scheduled Wakeups
NUMERIC AND ASCII TIME
SETTING THE SYSTEM TIME

CONDITION-HANDLING SERVICES
TYPES OF EXCEPTION

Change Mode and Compatibility Mode Handlers
HOW TO SPECIFY CONDITION HANDLERS

Page

6-13
6-14
6-15
6=17
6-19

|
HEHWOW®OEOIDINADNDU S

o

1
T
[RESENEN)

N NN NNUNNNNNNNNS
|

7-14
7-14
7-15
7-16
7-16
7-18

00 00 00 00 0 O 0 0O 0
11
NNADIDTWW NN

O
1
—

O W Y
|
N

CONTENTS

Page
9.3 THE EXCEPTION DISPATCHER 9-5
9.4 THE ARGUMENT LIST PASSED TO A CONDITION
HANDLER 9-7
9.4.1 Signal Array Arguments 9-7
9.4.2 Mechanism Array Arguments 9-9
9.5 COURSES OF ACTION FOR THE CONDITION HANDLER 9-10
9.6 EXAMPLE OF CONDITION-HANDLING ROUTINES
CONTINUING AND RESIGNALING 9-10
9.7 UNWINDING THE CALL STACK 9-12
9.8 MULTIPLE EXCEPTIONS 9-14
CHAPTER 10 MEMORY MANAGEMENT SERVICES 10-1
10.1 INCREASING VIRTUAL ADDRESS SPACE 10-1
10.2 INCREASING AND DECREASING VIRTUAL. ADDRESS
SPACE 10-2
10.2.1 Input Address Arrays and Return Address
Arrays 10-3
10.3 PAGE OWNERSHIP AND PAGE PROTECTION 10-4
10.4 WORKING SET PAGING 10-5
10.5 PROCESS SWAPPING 10-6
10.6 SECTIONS 10-6
10.6.1 Creating Sections 10-7
10.6.2 Opening the Disk File 10-8
10.6.3 Defining the Section Extents 10-8
10.6.4 Defining the Section Characteristics 10-9
10.6.5 Defining Global Section Characteristics 10-9
10.6.5.1 Global Section Name 10-10
10.6.6 Mapping Sections 10-11
10.6.7 Mapping Global Sections 10-13
10.6.8 Section Paging 10-15
10.6.9 Reading and Writing Data Sections 10-15
10.6.10 Releasing and Deleting Sections 10-146
10.6.11 Writing Back (Checkpointing) Sections 10-16
10.6.12 Image Sections 10-16
10.6.13 Page Frame Sections 10-17
PART II SYSTEM SERVICE DESCRIPTIONS 1
$ADJSTK 3
$ADJWSL 5
SALLOC 7
$ASCEFC 9
$ASCTIM 12
SASSIGN 14
SBINTIM 17
SBRDCST 19
SCANCEL 21
SCANEXH 23
SCANTIM 24
SCANWAK 25
$CLREF 27
SCMEXEC 28
$CMKRNL 29
$CNTREG 30
$CRELOG 32
$CREMBX 34
SCREPRC) 38

vi

SCRETVA
SCRMPSC
$DACEFC
$DALLOC
$DASSGN
SDCLAST
$DCLCMH
$DCLEXH
$DELLOG
$DELMBX
$DELPRC
SDELTVA
$DGBLSC
$DLCEFC
SEXIT
$EXPREG
$FAO
$FORCEX
$GETCHN
SGETDEV
SGETJPI
SGETMSG
SGETTIM
$SHIBER
SINPUT
SLCKPAG
SLWKSET
$MGBLSC
SNUMTIM
SOUTPUT
SPURGWS
SPUTMSG
$QI0
$SQIOW
SREADEF
$SRESUME
$SCHDWK
$SETAST
$SETEF
SSETEXV
$SETIME
SSETIMR
S$SETPRA
$SETPRI
SSETPRN
$SETPRT
$SETPRV
$SETRWM
$SETSFM
$SETSWM
$SNDACC
$SNDERR
$SNDOPR
$SNDSMB
$SUSPND
STRNLOG
SULKPAG
SULWSET

CONTENTS

vii

130
131
132
138
142
144
145
147
150
151
152
154
156
158
159
161
162
164
167
169
171
172
177
178
185
196
198
200
202

APPENDIX

APPENDIX B

APPENDIX C

INDEX

FIGURE

A

>

. o

www
w N -

[oNo e N®]

»ooPI P PP PDPDP DD

PO . e s 8 o s e s s e o @&
[8, |

WD NMDNDNDDNDDNDND N =

>

~

N

R Ooogauds W

o

N =

CONTENTS

SUNWIND
SUPDSEC
SWAITFR
SWAKE
SWFLAND
SWFLOR

SYSTEM SYMBOLIC DEFINITION MACROS

USING SYSTEM SYMBOLS

Page

204
206
209
210
212
213

d
N

$IODEF MACRO - SYMBOLIC NAMES FOR I/0 FUNCTION

CODES
Terminal Driver
Disk Drivers
Magnetic Tape Drivers
Line Printer Driver
Card Reader Driver
Mailbox Driver
DMCll Driver
ACP Interface Driver
LPA-11 Driver
DR32 Driver

$MSGDEF MACRO - SYMBOLIC NAMES FOR SYSTEM

MAILBOX MESSAGES

SPRDEF MACRO - SYMBOLIC NAMES FOR PROCESSOR

REGISTERS

> >:>Jv>'T'> > >
PONITIANIINT D WN

i
O

A-10

SPRTDEF - HARDWARE PROTECTION CODE DEFINITIONS A-1l

SPSLDEF MACRO - PROCESSOR STATUS LONGWORD

SYMBOL DEFINITIONS

$SSDEF MACRO - SYMBOLIC NAMES FOR SYSTEM

STATUS CODES
PROGRAM EXAMPLES
ORION PROGRAM EXAMPLE

CYGNUS PROGRAM EXAMPLE
LYRA PROGRAM EXAMPLE

QUICK REFERENCE SUMMARY OF SYSTEM SERVICES

VAX-11 MACRO FORMS
$name_G Form
$name S Form
SYSTEM SERVICE MACROS

FIGURES

Interpreting MACRO Examples

Using Local Event Flags

Example of a Common Event Flag Cluster
Example of an AST

An AST Service Routine

Logical Name Table Entries
Synchronizing I/0 Completion

viii

A-11

A-12

o
[|
[}

|
= 00
wn

[
[

[
RN

OOO(P (@] www

Index-1

FIGURE

TABLE

[e)e)TEe)]
|
oW N

=)
1
[l 9,]

[T I I
NHEEFEO D WN

|
I d_w

= =0 W OCWOONNIN
I

[eNo N
!
w N

LI Y I T T I
Il BN FROOIRU

HFO N W
I

o

PART II

w N =

~N YO

CONTENTS

FIGURES (Cont.)

Example of Terminal Input and Output
Device Allocation and Channel Assignment
Example of Using Formatted ASCII Output
Program

Mailbox Creation and I/O

Defining Input and Output Streams for a
Subprocess

Process Hibernation

Example of an Exit Handler

Image Exit and Process Deletion

Using a Termination Mailbox

Timer Requests

Search of Stack for Condition Handler

Argument List and Arrays Passed to Condition

Handler

Example of Condition Handling Routines
Unwinding the Call Stack

Layout of Process Virtual Address Space
Creating and Mapping a Private Section
Creating and Mapping a Global Section

TABLES

Event Flag Services

AST (Asynchronous Stystem Trap) Services
Logical Name Services

(Part 1) Input/Output Services for
Device-Dependent I/0

(Part 2) Input/Output Services for Mailboxes

and Messages

Process Control Services

Timer and Time Conversion Services
Condition Handling Services

Memory Management Services

Change Mode Services

Summary of Event Flag and Cluster Numbers
Default Device Names for I/0 Services
Process Identification

Process Hibernation and Suspension
Summary of Exception Conditions
Sample Virtual Address Arrays

Arguments for the $CRMPSC System Service
Summary of FAO Directives

How FAO Determines Output Field Lengths and
Fill Characters

Item Codes for Job/Process Information
Format of Accounting Log File Records
Request Types for Symbiont Manager Messages
Options for Symbiont Manager Messages

ix

Page

N N
[11
= o
S

N
|
-
o)

[}
ABDEHEEW
O N U

OO Y WOINII
|
—
=

b
o 1|
[
D W

10-12
10-14

7-10

10-4

53
88

90

110
174
190
192

PREFACE

This manual provides users of the VAX/VMS operating system with
detailed usage and reference information on the system services.,

VAX/VMS system services can be wused only in programs written in
languages that produce native code for the VAX-1l hardware. At
present, these languages include VAX-11 MACRO and the following
high-level languages:

VAX-11 BLISS-32
VAX-11 COBOL-74
VAX-11 FORTRAN
VAX-11 BASIC
VAX-11 PASCAL
VAX-11 CORAL

Other languages may be added in the future.

INTENDED AUDIENCE

This manual is intended for system and application programmers who are
already familiar with VAX/VMS system concepts. For an overview of the
operating system and an introduction to some of the concepts wused in
system services, see the VAX/VMS Summary Description and Glossary.

STRUCTURE OF THIS DOCUMENT

This manual is organized into two parts and three appendixes, as
follows:

Part I provides tutorial information on the wuse of system
services:

e Chapter 1 contains introductory information. It presents
overviews of the categories of system services and summarizes
the services in each category.

e Chapter 2 describes how to call system services., It contains
detailed information for the VAX-1ll1 MACRO programmer and
general information for the high-level 1language programmer,
For specific information about a high-level 1language and
programming examples in that language, see the appropriate
language user's guide.

e Chapters 3 through 10 guide new users in understanding how the
system services work and how to use them. Each category of
services has its own chapter. Examples are provided in VAX-1l1
MACRO, although they are explained 1in a way meaningful to
high-level language programmers.

xi

Part II provides detailed reference information

service. The descriptions
for ease of reference.

Appendix A lists the

Appendix B contains
services.

sample

Appendix C
reference.

summarizes the

system-provided macro
define symbolic names for frequently used system constants.

programs

system

on

are presented in alphabetical order

that use

service

The following figure illustrates how to use this book.

Read Chapter 1 for an overview
of all services; decide which
service(s) you want to use.

Do you
understand the
rules and conventions
for coding calls to

system services?

instructions

various

formats

Read Chapter 2 for
coding conventions
and examples.

Do you need
more information
about how a service or
group of services
works?

Read the chapters (3-10)
for usage information and
examples of the services.

\

To code a call to a system
service, read the reference
description of the service
in Part Il.

How to Use

This Book

xii

ASSOCIATED DOCUMENTS
The following documents are prerequisite for
e All Users: |

VAX/VMS Summary Description and Glossary

® MACRO Programmers:

VAX-11 MACRO Language Reference Manual
VAX-11 MACRO User's Guide

e High-Level Language Programmers:

The language reference manual for your language
The user's guide for your language

The following documents may also be useful:

® VAX/VMS Real-Time User's Guide

e VAX/VMS Command Language User's Guide

e Introduction to VAX-11 Record Management Services

e VAX-11 Record Management Services Reference Manual

e VAX/VMS I1/0 User's Guide

e DECnet-VAX User's Guide

For a complete list of VAX-11 documents, including descriptions of

each, see the VAX-1ll Information Directory and Index.

CONVENTIONS USED IN THIS DOCUMENT

The following syntactical conventions are used in this manual:

e DBrackets ([1) in system service descriptions
optional arguments. -

e Horizontal ellipsis (...) indicates: (1) when shown
format of a system service call, that additional
arguments have been omitted; (2) when shown in an
that additional arguments required by a service
pertinent to the example are not shown.

e Vertical ellipsis in coding examples indicates that

indicate

in the
optional
example,
but not

lines of

code not pertinent to the example are not shown. For example:
e Uppercase letters in a system service format show keywords
that must be entered as shown; lowercase letters show

variable data.

xiii

SUMMARY OF TECHNICAL CHANGES

This manual applies to Version 2.0 of VAX/VMS, This section
summarizes the main technical changes from the Version 1.0 manual.

This manual contains detailed, language-specific information for
VAX-11 MACRO only. Detailed information about calling system services
from a high-level language can be found in the user's guide for that
language. However, to provide some help to high-level language
programmers, Section 2.2 contains general information about calling
system services from such languages, and Section 2.3 provides
"equivalents" of a VAX-11 MACRO coding example in the following
languages:

e VAX-11 FORTRAN

e VAX-11 COBOL-74

e VAX-11 BLISS-32

e VAX-11 CORAL

e VAX-11 PASCAL

e VAX-11 BASIC

The ability to have multiport memory shared by multiple processors has
expanded the capabilities of the following services:

SASCEFC - Associate Common Event Flag Cluster
SCREMBX - Create Mailbox and Assign Channel
$CRMPSC - Create and Map Section

SDACEFC - Disassociate Common Event Flag Cluster
$DELMBX - Delete Mailbox

$DGBLSC - Delete Global Section

SDLCEFC - Delete Common Event Flag Cluster
SUPDSEC - Update Section File on Disk

and to services that can set, clear, or wait for event flags in shared
memory.

XV

Other changes include the following:

SCREMBX (Create Mailbox and Assign Channel) operates
differently if a mailbox with the specified name already
exists. It now assigns a channel to the existing mailbox,
whereas before it replaced the previous equivalence name with
a new equivalence name and returned the status code
SS$_SUPERSEDE.

SDASSGN (Deassign I/0 Channel) does not require that all
additional channels assigned to a device be deassigned before
clearing the linkage to an associated mailbox.

$SGETJPI (Get Job/Process Information) accepts additional
arguments, allows "wildcard" process searching, and no longer
has the restriction that a process requesting information
about another process can obtain only information contained in
that other process's PCB (process control block). This
service returns immediately (often before obtaining the
desired information) if the information 1is about another
process.

SGETMSG (Get Message) can process user-defined messages, in
addition to messages from the system message file.

SSETIME (Set System Time) is a new service,
SSETPRV (Set Privileges) is a new service.

Quota descriptions and values in the explanation of S$CREPRC
(Create Process) contain changes. Most quotas that were
deductible are now pooled.

Page frame number (PFN) mapping is available with the $CRMPSC
service.

The JASCID assembler directive 1is used to <create input
character string descriptors in MACRO coding examples,
replacing the user-written DESCRIPTOR macro.

Appendix A includes new symbols defined by $SSDEF and other
macros.

Appendix B is rewritten so that the explanations of the
program examples stand out more clearly and the examples are
easier to follow.

Errors and omissions in the Version 1.0 manual are corrected. For

example,

certain message formatting and time conversion services are

not affected by system service failure exception mode.

xvi

PART I

USING SYSTEM SERVICES

CHAPTER 1

INTRODUCTION TO SYSTEM SERVICES

System services are procedures that the VAX/VMS operating system uses
to control resources available to processes; to provide for
communication among processes; and to perform basic operating system
functions, such as the coordination of input/output operations.

Although most system services are used primarily by the operating
system itself on behalf of logged-in users, many are available for
general use and provide techniques that can be used in application
programs. For example, when you log into the system, the Create
Process system service is called to create a process on your behalf,
You may, in turn, code a program that calls the Create Process system
service to create a subprocess to perform certain functions for an
application.

l.1 WHO CAN USE SYSTEM SERVICES: PRIVILEGE AND PROTECTION

Many system services are available and suitable for application
programs, but the use of some services must be restricted to protect
the performance of the system and the integrity of user processes.

For example, because the creation of permanent mailboxes uses system
dynamic memory, the unrestricted use of permanent mailboxes could
decrease the amount of memory available to other users. Therefore,
the ability to create permanent mailboxes is controlled: a user must
be specifically assigned the privilege to wuse the Create Mailbox
system service to create a permanent mailbox.

The various controls and restrictions applied to system service usage
are described below. The tables in Section 1.2 that summarize the
system services note any restrictions on the use of specific services.

1.1.1 User Privileges and Resource Quotas

The system manager, who maintains the user authorization file for the
system, grants privileges to use protected system services., The user
authorization file contains, in addition to profile information on
each user, a list of specific user privileges and resource quotas.

INTRODUCTION TO SYSTEM SERVICES

When you log into the system, the privileges and quotas you have been
assigned are associated with the process created on your behalf.
These privileges and quotas are applied to every image that the
process executes.

When an image issues a call to a system service that is protected by
privilege, the privilege 1list is checked. 1If you have been granted
the specific privilege required, the image is allowed to execute the
system service; otherwise, a status code 1indicating an error is
returned.

When a system service that uses a resource controlled by a quota is
called, the process's quota for that resource is checked. If the
process has exceeded its quota, or if it has no quota allotment, an
error status code may be returned. In some cases, the process may be
placed in a wait state until the resource becomes available; see
Section 2.1.5.4, "Special Return Conditions."

1.1.2 Control by Group Association

Some system services provide techniques for coordinating and
synchronizing the execution of different processes. These services
require cooperating processes to be in the same group; that 1is, the
group fields in the user identification codes (UICs) for the processes
must match.

For example, event flags are used to post the occurrence of events in
a program and can be shared among cooperating processes. However, the
processes that share a cluster of event flags must be in the same
group.

1.1.3 Protection by Access Mode

A process can execute at any one of four access modes: user,
supervisor, executive, or kernel. The access modes determine a
process's ability to access pages of virtual memory. Each page has a
protection code associated with it, specifying the type of access --
read, write, or no access -- allowed for each mode. The VAX-11/780
Architecture Handbook provides additional information on access modes.

For the most part, user-written programs execute in user mode; system
programs executing at the wuser's request (system services, for
example) may execute at one of the other three, more privileged,
access modes.

In some system service calls, the access mode of the caller is
checked. For example, when a process tries to cancel timer requests,
it can cancel only those requests that were issued from the same or
less privileged access modes. For example, a process executing in
user mode cannot cancel a timer request made from supervisor,
executive, or kernel mode, which are more privileged access modes.

INTRODUCTION TO SYSTEM SERVICES

1.2 SUMMARY OF VAX/VMS SYSTEM SERVICES

The following sections summarize the VAX/VMS system services in
functional groups, with tables 1listing the services that belong in
each group. Each table lists:

e The full name of the service and the short, macro name by
which it is alphabetized in this book.

e The functions performed by the service, with distinctions
based on privilege (where applicable).

e Restrictions on the use of the service, if any. This column
is keyed as follows:

None indicates that no restriction 1is placed on
the use of the service for this function.

xxx privilege indicates the specific user privilege that is
required to use the service for the requested
function.

YYY duota indicates the specific resource quota that is

required to use the service for the requested
function.

Access mode indicates that this service uses the access
mode of the caller to determine whether the
caller can execute the function requested.

Processor indicates restrictions when the function |is
used with memory that is shared by multiple
processors.

UIC protection indicates that +this service may restrict
access based on the caller's UIC,

For detailed information about a restriction applied to any
specific service, see that service's description in Part II.

Chapters 3 through 10 provide additional information, including
examples, on the services listed in Tables 1-1 through 1-8.

1.2.1 Event Flag Services

A process can use event flags to synchronize sequences of operations
in a program. Event flag services clear, set, and read event flags,
and place a process in a wait state pending the setting of an event
flag or flags.

Table 1-1 1lists the event flag services.

INTRODUCTION TO SYSTEM SERVICES

Table 1-1
Event Flag Services

Service Name

Function(s)

Restriction(s)1

Associate Common
Event Flag Cluster
(SASCEFC)

Disassociate Common
Event Flag Cluster
($SDACEFC)

Delete Common Event
Flag Cluster
($DLCEFC)

Set Event Flag
(SSETEF)

Clear Event Flag
(SCLREF)

Read Event Flags
(SREADEF)

Creates a temporary com-
mon event flag cluster

Creates a permanent com-
mon event flag cluster

Creates a common event
flag cluster in memory
shared by multiple
processors

Establishes association
with an existing common
event flag cluster

Cancels association with
a common event flag
cluster

Marks a permanent common
event flag cluster for
deletion

Turns on an event flag
in a process-local event
flag cluster

Turns on an event flag
in a common event flag
cluster

Turns off an event flag
in a process-local event
flag cluster

Turns off an event flag
in a common event flag
cluster

Returns the status of
all event flags in a
process—-local event flag
cluster

Returns the status of
all event flags in a
common event flag
cluster

TQELM quota

PRMCEB privilege

SHMEM privilege

Group association

None

PRMCEB privilege

Group association

None

Group association

None

Group association

None

Group association

1. For an explanation of the terms used in this column, see Page 1-3.

(continued on next page)

INTRODUCTION TO SYSTEM SERVICES

Table 1-1 (Cont.)
Event Flag Services

Service Name

Function (s)

Restriction(s)1

Wait for Single
Event Flag
(SWAITFR)

Wait for Logical OR
of Event Flags
(SWFLOR)

Wait for

Logical AND

of Event Flags
(SWFLAND)

Places the current pro-
cess in a wait state
pending the setting of
an event flag in a
process-local event flag
cluster

Places the current pro-
cess in a wait state

pending the setting of
an event flag in a com-
mon event flag cluster

Places the current pro-
cess in a wait state
pending the setting of
any one of a specified
set of flags in a
process-local event flag
cluster

Places the current pro-
cess in a wait state
pending the setting of
any one of a specified
set of flags in a common
event flag cluster

Places the current pro-
cess in a wait state
pending the setting of
all specified flags in a
process-local event flag
cluster

Places the current pro-
cess in a wait state
pending the setting of
all specified flags in a
common event flag
cluster

None

Group association

None

Group association

None

Group association

1. For an explanation of the terms used in this column, see Page 1-3.

1.2.2 AST (Asynchronous System Trap) Services

Process execution can be interrupted by events (such as I/0
completion) for the -execution of designated subroutines. These
software interrupts are called asynchronous system traps (ASTs)
because they occur asynchronously to process execution. System

services are provided so that a process can control the
ASTs.

handling of

INTRODUCTION TO SYSTEM SERVICES

Table 1-2 lists the AST services.

Table 1-2
AST (Asynchronous System Trap) Services
Service Name Function(s) Restriction(s)l
Set AST Enable Enables or disables the None
($SETAST) delivery of ASTs
Declare AST Queues an AST for delivery ASTLM quota
($DCLAST) Access mode
Set Power Recovery Establishes AST routine to ASTLM quota
AST ($SETPRA) receive control following
power recovery condition

1. For an explanation of the terms used in this column, see Page 1-3.

1.2.3 Logical Name Services

Logical name services provide a generalized technique for maintaining
and accessing character string 1logical name and equivalence name
pairs. Logical names can provide device-independence for system and
application program input and output operations.

Table 1-3 lists the logical name services.

Table 1-3
Logical Name Services

Service Name Function (s) Restriction(s)l
Create Logical Places logical Access mode
Name ($CRELOG) name/equivalence name

pair in process logical
name table

Places logical GRPNAM privilege
name/equivalence name Group association
pair in group logical
name table

Places logical SYSNAM privilege
name/equivalence name
pair in system logical
name table

(continued on next page)

INTRODUCTION TO SYSTEM SERVICES

Table 1-3 (Cont.)
Logical Name Services

Service Name Function(s) Restriction(s)1
Delete Logical Name Removes logical None
(SDELLOG) name/equivalence name

pair from process
logical name table

Removes logical GRPNAM privilege
name/equivalence name Group association
pair from group logical
name table

Removes logical SYSNAM privilege
name/equivalence name
pair from system logical
name table

Translate Logical Searches logical name None
Name ($TRNLOG) tables for a specified
logical name and return
its equivalence name
when the first match is
found

1. For an explanation of the terms used in this column, see Page 1-3.

1.2.4 Input/Output Services
I/0 services perform input and output operations directly, rather than
through the file-handling services of the VAX-11l Record Management
Services (RMS). 1I/0 services:

e Perform logical and virtual input/output operations

e Format output lines converting binary numeric values to ASCII
strings and substituting variable data in ASCII strings

e Create mailboxes for interprocess communication

e Perform network operations

e Queue messages to system processes
Table 1-4 lists the 1I/0 services. The following manuals provide
additional information on aspects of input/output operations not

covered in this manual:

e Introduction to VAX-11] Record Management Services

e VAX-11 Record Management Services Reference Manual

e VAX/VMS I/0 User's Guide

® DECnet-VAX User's Guide

Table 1-4 (Part 1)

INTRODUCTION TO SYSTEM SERVICES

Input/Output Services for Device-Dependent I/0

Service Name

Function(s)

Restriction(s)1

Assign I/0 Channel
(SASSIGN)

Deassign
I/0 Channel
(SDASSGN)

Queue I/0 Request
($0Q10)

Queue I/0 Request

and Wait for Event
Flag ($QIOW)

SINPUT

SOUTPUT

Formatted ASCII
Output ($FAOQ)

Formatted ASCII
Output with List
Parameter (SFAOL)

Allocate Device
(SALLOC)

Establishes a path for
an I/0 request

Establishes a path for
network operations

Releases linkage for an
I/0 path

Releases a path from the
network

Initiates an input or
output operation

Initiates an input or
output operation and
causes the process to
wait until it is
completed before
continuing execution

Initiates virtual input
operation and waits for
completion

Initiates virtual output
operation and waits for
completion

Performs ASCII string
substitution, and
converts numeric data to
ASCII representation and
substitutes in output

Reserves a device for
exclusive use by a
process and its sub-
processes

Reserves a spooled
device for exclusive use

None

NETMBX privilege

Access mode

Access mode?2

Access mode

Access mode

Access mode

None

None

ALLSPOOL privilege

1. For an explanation of the terms used in this column, see Page 1-3.

2. Depending on the specific nature of the input or output request,

the service

direct

space (BYTLM), or AST limit (ASTLIM).

I/0

may require the PHY IO, LOG_IO, or MOUNT privileges,
or quotas for buffered I/0 (BIOLM),

(DIOLM), buffer

(continued on next page)

Table 1-4

(Part 1) (Cont.)

INTRODUCTION TO SYSTEM SERVICES

Input/Output Services for Device-Dependent I/0

Service Name

Function(s)

Restriction(s)1

Deallocate Device
($SDALLOC)

Get I/0 Channel
Information
(SGETCHN)

Get I/0 Device
Information
(SGETDEV)

Cancel I/0
on Channel
(SCANCEL)

Relinquishes exclusive
use of a device

Provides information
about a device to which
an I/0 channel has been
assigned

Provides information

about a device

Cancels pending I/0
requests on a channel

Access mode

Access mode

None

Access mode

1. For an explanation of the terms used in this column, see Page 1-3.

Table 1-4 (Part 2)

Input/Output Services for Mailboxes and Messages

Service Name

Function(s)

Restriction(s)1

Create Mailbox
and Assign
Channel

(SCREMBX)

Delete Mailbox
(SDELMBX)

Broadcast
(SBRDCST)

Creates a temporary mail-
box

Creates a permanent mail-
box

Marks a permanent mailbox
for deletion

Sends a high-priority
message to an assigned
terminal

Sends a high-priority
message to a nonassigned
terminal or to all
terminals

BYTLM quota
TMPMBX privilegg
SHMEM privilege

PRMMBX privilege
SHMEM privilege

PRMMBX privilege
Access mode
Processor

None

OPER privilege

1. For an explanation of the terms used in this

2. The SHMEM privilege is required only if the mailbox is

column, see Page 1-3.

created

in memory that is being shared by multiple processors.

(continued on next page)

1-9

Input/Output Services for Mailboxes and

INTRODUCTION TO SYSTEM SERVICES

Table 1-4 (Part 2) (Cont.)

Messages

Service Name

Function (s)

Restriction(s)l

Send Message to
Accounting Manager
($SNDACC)

Send Message to
Symbiont Manager
($SNDSMB)

Send Message to
Operator
($SNDOPR)

Send Message to
Error Logger
(SSNDERR)

Get Message
($GETMSG)

Put Message
(SPUTMSG)

Controls accounting log
file activity

Writes an arbitrary
message to the accounting
log file

Requests symbiont manager
to initialize, modify, or
delete a printer or batch
job queue, or a device
queue

Requests symbiont manager
to delete or change char-
acteristics of a queued
file

Writes a message to
designated operator (s)
terminal (s)

Enables or disables an
operator's terminal,

sends a reply to a user
request or initializes
the operator's log file

Writes arbitrary data to
the system error log file

Returns text of system
error message from
message file

Writes a message to the
current output and error
devices

OPER privilege

None

OPER privilege

Group association

None

OPER privilege

BUGCHK privilege

None

None

1. For an explanation of the terms used in this column, see Page 1-3.

1.2.5 Process Control Services

Process control services allow you to create, delete, and control
execution of processes.

the

Table 1-5 lists the process control services.

INTRODUCTION TO SYSTEM SERVICES

Table 1-5
Process Control Services

Service Name Function(s) Restriction(s)l
Create Process Creates a subprocess PRCLM quota
(SCREPRC)
Creates a detached DETACH privilege
process
Delete Process Deletes the current None
($DELPRC) process or a subprocess
Deletes another process GROUP privilege
in the same group Group association
Deletes any process in WORLD privilege
the system
Suspend Process Makes the current process None
($SUSPND) or a subprocess

nonexecutable and unable
to receive ASTs until a
subsequent resume or
delete request

Makes another process in GROUP privilege
the same group non- Group association
executable and unable to
receive ASTs until a
subsequent resume or
delete request

Makes any process in the WORLD privilege
system nonexecutable and
noninterruptible until a
subsequent resume or
delete request

Resume Process Restores executability of None
(SRESUME) a suspended subprocess

Restores executability of GROUP privilege
a suspended process in Group association
the same group

Restores executability of WORLD privilege
any suspended process in
the system

Hibernate (SHIBER) Makes the current process None
dormant but able to
receive ASTs until a sub-
sequent wakeup request

1. For an explanation of the terms used in this column, see Page 1-3.

(continued on next page)

Table 1-5 (Cont.)
Process Control Services

INTRODUCTION TO SYSTEM SERVICES

Service Name

Function(s)

Restriction(s)1

Wake (SWAKE)

Schedule Wakeup
($SCHDWK)

Cancel Wakeup
(SCANWAK)

Exit ($SEXIT)

Force Exit
($FORCEX)

Declare Exit
Handler
(SDCLEXH)

Cancel Exit
Handler
(SCANEXH)

Set Process Name
(SSETPRN)

Restores executability of
the current process or a
hibernating subprocess

Restores executability of
a hibernating process in
the same group

Restores executability of
any hibernating process
in the system

Wakes a process after a
specified time interval
or at a specific time2

Cancels a scheduled
wakeup request?2

Terminates execution of
an image and returns to
command interpreter

Causes image exit for the
current process or a
subprocess

Causes image exit for a
process in the same
group

Causes image exit for any
process in the system

Designates a routine to
receive control when
image exits

Cancels a previously
established exit handling
routine

Establishes a text name
string to be used to
identify the current
process

None
GROUP privilege

Group association

WORLD privilege

None

None

GROUP privilege

Group association

WORLD privilege

None

Access mode

None

1. For an explanation of the terms used in this column, see Page 1-3,

2. Functions performed by these services are listed in

Table 1-6.

detail in

(continued on next page)

INTRODUCTION TO SYSTEM SERVICES

Table 1-5 (Cont.)
Process Control Services

Service Name Function(s) Restriction(s)1
Set Priority Increases the execution ALTPRI privilege
($SSETPRI) priority for any process
Changes the execution None

priority for the current
process or a subprocess

Changes the execution GROUP privilege
priority for a process in Group association
the same group

Changes the execution WORLD privilege
priority for any process
in the system

Set Resource Wait Requests wait, or that None
Mode ($SSETRWM) control be returned
immediately, when a
system service call
cannot be executed
because a system resource
is not available

Get Job/Process Returns information about None
Information the current process
(SGETJPI)

Returns information about GROUP privilege
the current context of Group association
other processes in the
same group

Returns information about WORLD privilege
any other process in the
system

1. For an explanation of the terms used in this column, see Page 1-3,

1.2.6 Timer and Time Conversion Services

Timer services schedule program events for a particular time of day,
or for after a specified interval of time has elapsed. The time
conversion services provide a way to obtain and format binary time
values for use with the timer services.

Table 1-6 lists the timer and time conversion services.

INTRODUCTION TO SYSTEM SERVICES

Table 1-6

Timer and Time Conversion Services

Service Name

Function (s)

Restriction(s)1

Get Time
(SGETTIM)

Convert Binary Time
to Numeric Time
(SNUMTIM)

Convert Binary Time
to ASCII String
(SASCTIM)

Convert ASCII
String to Binary
Time (SBINTIM)

Set Timer ($SETIMR)

Cancel Timer
Request
(SCANTIM)

Schedule Wakeup
($SCHDWK)

Cancel Wakeup
($CANWAK)

Returns the date and
time in system format

Converts a date and time
from system format to
numeric integer values

Converts a date and time
from system format to
an ASCII string

Converts a date and time
in an ASCII string to
the system date and time
format

Requests setting of an
event flag or queueing
of an AST based on an

absolute or delta time
value

Cancels previously
issued timer requests

Schedules a wakeup for
the current process or a
hibernating subprocess

Schedules a wakeup for a
hibernating process in
the same group

Schedules a wakeup for
any hibernating process
in the system

Cancels a scheduled
wakeup request for the
current process or a
hibernating subprocess

None

None

None

None

TQELM

quota?

Access mode

ASTLM

GROUP
ASTLM
Group

WORLD
ASTLM

None

quota

privilege
quota
association

privilege
quota

1. For an explanation of the terms used in this column, see Page 1-3.

2. Setting an event flag in a common event flag

association based on
requires ASTLM quota.

group number;

cluster
a timer request with an AST

requires

(continued on next page)

INTRODUCTION TO SYSTEM SERVICES

Table 1-6 (Cont.)

Timer and Time Conversion Services

Service Name

Function(s)

Restriction(s)1

Cancel Wakeup
($SCANWAK)
(Cont.)

Set System Time
($SETIME)

Cancels a scheduled
wakeup request for a
hibernating process in
the same group

Cancels a scheduled
wakeup request for any
hibernating process in
the system

Sets or recalibrates the
current system time

GROUP privilege
Group association

WORLD privilege

OPER privilege
LOG_IO privilege

1. For an explanation of the terms used in this column, see Page 1-3.

1.2.7 Condition-Handling Services

Condition handlers are procedures that can be
control when a hardware or software exception condition occurs during
image execution. Condition-handling services designate condition
handlers for special purposes.

designated to receive

Table 1-7 lists the condition-handling services.

Table 1-7
Condition Handling Services

Service Name Function(s) Restriction(s)1

Set Exception Defines condition handlers Access mode

Vector to receive control in case
($SETEXV) of hardware- or software-
detected exception condi-
tions
Set System Service Requests or disables gener- None
Failure Exception ation of a software excep-
Mode (SSETSFM) tion condition when a sys-
tem service call returns an
error or severe error
Unwind from Deletes a specified number None

Condition Handler
Frame (SUNWIND)

of call frames from the
call stack following a non-
recoverable exception con-
dition

1. For an explanation of the terms used in this column, see Page 1-3.

(continued on next page)

INTRODUCTION TO SYSTEM SERVICES

Table 1-7 (Cont.)
Condition Handling Services

Service Name Function(s) Restriction(s)1

Declare Change Designates a routine to re- Access mode
Mode or ceive control when change
Compatibility mode to user instructions
Mode Handler are encountered
($DCLCMH)
Designates a routine to re- Access mode

ceive control when change
mode to supervisor instruc-
tions are encountered

Designates a routine to re- None
ceive control when compati-
bility mode exceptions
occur

1. For an explanation of the terms used in this column, see Page 1-3.

1.2.8 Memory Management Services

Memory management services provide ways to wuse the wvirtual address
space available to a program. Included are services that:

e Allow an image to increase or decrease the amount of virtual
memory available

e Control the paging and swapping of virtual memory

e Create and access in memory files that contain shareable code
or data

Table 1-8 lists the memory management services.

Table 1-8
Memory Management Services
Service Name Function (s) Restriction(s)1
Expand Program/ Adds pages at the end None
Control Region of the program or con-
(SEXPREG) trol region
Contract Program/ Deletes pages from the None
Control Region end of the program or
(SCNTREG) control region
Create Virtual Adds pages to the None
Address Space virtual address space
(SCRETVA) available to an image

1. For an explanation of the terms used in this column, see Page 1-3.

(continued on next page)

Table 1-8 (Cont.)

Memory Management Services

INTRODUCTION TO SYSTEM SERVICES

Service Name

Function(s)

Restriction(s)1

Delete Virtual
Address Space
($DELTVA)

Create and Map
Section
(SCRMPSC)

Makes a range of
virtual addresses un-
available to an image

Identifies a disk file
as a private section
and establishes
correspondence between
virtual blocks in the
file and the process's
virtual address space

Identifies a disk file
containing shareable
code or data as a
temporary global sec-
tion and establishes
correspondence between
virtual blocks in the
file and the process's
virtual address space

Identifies a disk file
containing shareable
code or data as a
permanent global sec-
tion and establishes
correspondence between
virtual blocks in the
file and the process's
virtual address space

Identifies a disk file
containing shareable
code or data as a sys-
tem global section and
establishes correspond-
ence between virtual
blocks in the file and
the process's virtual
address space

None

Access mode

Access mode

PRMGBL privilege
SHMEM privilege?2
Access mode

SYSGBL privilege
SHMEM privilege?2
Access mode

1. For an explanation of the terms used in this column, see Page 1-3.

2. The SHMEM privilege is required only if the section
in memory that
addition, calls

being shared by multiple processors,

SUPDSEC and $DGBLSC are

valid only from

processes on the processor that created the section.

(continued on next page)

is created

INTRODUCTION TO SYSTEM SERVICES

Table 1-8 (Cont.)

Memory Management Services

Service Name

Function(s)

Restriction(s)1

Create and Map

Section
(SCRMPSC)
(Cont.)

Update Section File
on Disk
($UPDSEC)

Map Global Section
(SMGBLSC)

Delete Global
Section (SDGBLSC)

Lock Pages in
Working Set
(SLKWSET)

Unlock Pages from
Working Set
(SULWSET)

Purge Working
Set (SPURGWS)

Identifies one or more
page frames in physi-
cal memory as a pri-
vate or global section
and establishes cor-
respondence between
the page frames and
the process's virtual
address space.

Writes modified pages
of a private or global
section .into the
section file

Establishes corre-
spondence between a
global section and a
process's virtual
address space

Marks a permanent
global section for
deletion

Marks a system global
section for deletion

Specifies that
particular pages
cannot be paged out of
the process's working
set

Allows previously
locked pages to be
paged out of working
set

Removes all pages
within a specified
range from the current
working set

PFNMAP privilege3
Access mode

Access mode
Processor?2

UIC protection

PRMGBL privilege
Processor 2

SYSGBL privilege
Access mode
Processor

Access mode

Access mode

None

l1.For an explanation of the terms used in this

2. The SHMEM privilege is required only if the section is
by multiple

in memory
addition,

that is
calls to

shared
and S$DGBLSC

being
SUPDSEC

column, see Page 1-3,

processors.,
valid only

processes on the processor that created the section.

3.The PRMGBL or SYSGBL privilege is also required for a
section or system global section,
privilege is also required if the section

global

that is being shared by multiple processors.

(continued on next page)

respectively.
is

located in

created
from
permanent

The SHMEM
memory

INTRODUCTION TO SYSTEM SERVICES

Table 1-8 (Cont.)

Memory Management Services

Service Name

Function (s)

Restriction(s)1

Lock Page in Memory
(SLCKPAG)

Unlock Page in
Memory (SULKPAG)

Adjust Working Set
Limit ($SADJWSL)
Set Protection on

Pages ($SETPRT)

Set Process Swap
Mode ($SETSWM)

Specifies that
particular pages may
not be swapped out of
nemory

Allows previously
locked pages to be
swapped out of memory

Changes maximum number
of pages that the
current process can
have in its working
set

Controls access to a
range of virtual
addresses

Controls whether or
not the current
process cah be swapped
out of the balance set

User privilege
Access mode

User privilege

Access mode

WSQUOTA quota

Access mode

PSWAPM privilege

1. For an explanation of the terms used in this column, see Page 1-3.

1.2.9 Change Mode Services

Change mode services alter the access mode of a process to a more
privileged mode to execute particular routines, or change the stack
pointer for a less privileged mode. These services are used primarily
by the operating system.

Table 1-9 lists the change mode services.

INTRODUCTION TO SYSTEM SERVICES

Table 1-9
Change Mode Services

Service Name

Function(s)

Restriction(s)1

Change to Executive
Mode ($CMEXEC)

Change to Kernel
Mode (SCMKRNL)

Adjust Outer Mode
Stack Pointer
($ADJSTK)

Executes a specified
routine in executive mode

Executes a specified
routine in kernel mode

Modifies the current
stack pointer for a less
privileged access mode

CMEXEC
Access

CMKRNL
Access

Access

privilege
mode

privilege
mode

mode

1. For an explanation of the terms used in this

column, see Page 1-3.

CHAPTER 2

CALLING THE SYSTEM SERVICES

System service procedures are called using the standard VAX-1ll
procedure calling conventions., The programming 1languages that
generate VAX-1l native mode instructions provide mechanisms for coding
the procedure calls. These languages and supporting documentation are
listed in the Preface.

When you code a system service call, you must supply whatever
arguments the service requires.

When the service completes execution, it returns control to the
calling program with a return status code., The caller should analyze
the status code to determine the success or failure of the service
call, so the program can alter the flow of execution, if necessary.

If you are a VAX-11l MACRO programmer, you should read Section 2.1 for
details on how to <code the macro instructions that generate system
service calls.

If you program in any other language, you should read Section 2.2 for
general information on how to <call system services. For detailed
information and examples, however, see the wuser's guide for your
language.

Each of these sections also discusses conventions for coding arguments
and methods of checking for the successful completion of a system
service,

Both the MACRO programmer and the high-level language programmer
should read Section 2.3, which provides help in interpreting the
coding examples that appear throughout Chapters 3-10.

2.1 MACRO CODING

System service macros generate argument lists and CALL instructions to
call system services. These macros are located in the system library
STARLET.MLB; this library is searched automatically for wunresolved
references when you assemble a source program.

Knowledge of MACRO rules for assembly language coding is required for
understanding the material presented in this section., The VAX-11
MACRO Language Reference Manual and the VAX-11 MACRO User's Guide
contain the necessary prerequisite information.

CALLING THE SYSTEM SERVICES

2.1.1 Argument Lists

You can determine the arguments required by a system service from the
service description in Part II. The "Macro Format" for each system
service indicates the positional dependencies and keyword names of
each argument as shown in the following sample:

$SERVICE arga ,argb ,argc ,argd
This format indicates that the macro name of the service is $SERVICE
and that it requires four arguments, ordered as shown and with keyword
names ARGA, ARGB, ARGC, and ARGD. The argument list for this service
must have the format:

31 8 7 0

arga

argb

argc

argd

All arguments are longwords. The first 1longword in the 1list must
always contain, in its low-order byte, the number of arguments in the
remainder of the list. The remaining three bytes must be zeros.

Many arguments to system services are optional; these are indicated
in the macro formats by brackets. For example, if the second and
third arguments of $SERVICE are optional, the macro format would
appear as:

$SERVICE arga ,[argb] ,[argc] ,argd

If you omit an optional argument in a system service macro
instruction, the macro supplies a default value for the argument.

There are two generic macro forms for coding calls to system services:

$name_G
$name_S

The form of the macro to use depends on how the argument list for the
system service is constructed:

e The S$name_G form requires you to construct an argument list
elsewhere 1in the program and specify the address of this list
as an argument to the system service. (A macro is provided to
create an argument 1list for each system service.) With this
form, you can use the same argument list, with modifications
if necessary, for more than one invocation of the macro.

e The $name_S form requires you to supply the arguments to the
system service in the macro instruction. The macro generates
code to push the argument list onto the call stack during
program execution. With this form, you can use registers to
contain or point to arguments sSo you can write re-entrant
programs.

CALLING THE SYSTEM SERVICES

The $name G macro form generates a CALLG instruction; the S$name S
macro form generates a CALLS instruction. The services are called
according to the standard procedure calling conventions. System
services save all registers except RO and Rl, and restore the saved
registers before returning control to the caller.

The following sections describe how to code system service calls using
each of these macro forms.

2.1.2 Sname_G Form
The $name~G macro form requires a single ‘operand:
$name_G label

label
address of the argument list.

You can use the $name macro to create the argument list. The format
of the $name macro is:

label: $name argl,...,argn

label

symbolic address of the generated argument 1list, This 1is the
label®#given as an argument in the S$name_G macro form.

$name
the service macro name.

argl,...,argn
arguments to be placed in successive longwords in the argument
list.

2.1.2.1 specifying Arguments with the $name Macro - When you use the
$name macro to construct an argument list for a system service, you
can specify the arguments in any of three ways:

1. By using keywords to describe the arguments. A keyword must
be followed by an equal sign (=) and then by the value of the
argument.

2. By using positional order, with omitted arguments indicated
by commas in the argument positions. You can omit commas for
optional trailing arguments.

3. By using both positional dependence and keyword names (you
must list positional arguments first).

For example, $SERVICE may have the format:

$SERVICE arga ,largb] ,[argc] ,argd
Assume, for the purposes of this example, that ARGA and ARGB are
arguments that require vyou to code numeric values and that ARGC and
ARGD require you to code addresses.

The two following examples show valid ways of coding a $name macro to
construct an argument list for a later call to $SERVICE,

CALLING THE SYSTEM SERVICES

[Egample l: Using Keywords]

LIST: $SERVICE ARGB*O;AﬂGC¢OvéRGA=1thGDwHYARGD

lExample 2: Specifying Arguments in Positional Order]

LIST: $SERVICE 1sysMYARGD
The argument list generated in both cases is:

LIST? + LONG 4

+LONG 1
+LLONG 4]
+ LONG 0

+LONG MYARGD

Note that all arguments, whether coded in positional order or by
keyword, must be expressions that the assembler can evaluate to
generate .LONG data directives.

2.1.2.2 Example of $name and $name_G Macro Calls - This example shows
how you can code a call to the Read Event Flags ($READEF) system
service using an argument list created by $name.

As shown in Part II, the macro format of the S$READEF system service
is:

SREADEF efn ,state
The EFN argument must specify the number of an event flag cluster, and
the STATE argument must supply the address of a longword to receive
the contents of the cluster.

These arguments might be specified using the $name macro form as
follows:

READLST! $REALNEF EFN=1ySTATE=TESTFLAG $ARGUMENT LIST FOR $REAIEF
This SREADEF macro generates the code:
REAI.ST S +.ONG 2 FARGUMENT LIST FOR $READEF
+LONG 1
+LLONG TESTFIL.AG
To execute the $READEF macro now requires only the line:
SREADEF..6 READLST

The macro generates the following code to call the Read Event Flags
system service:

CALLG READLSTy@#SYBSREADEF
SYSSREADEF is the name of a vector to the entry point of the Read

Event Flags system service. The linker automatically resolves the
entry point addresses for all system services,

CALLING THE SYSTEM SERVICES

2.1.2.3 Symbolic Names for Argument List Offsets - The $name_G macro
form (used with the $name macro) is especially useful for:

e Coding calls to system services that have long argument lists

e Services that may be called repeatedly during the execution of
a single program with the same, or essentially the same,
argument list

When you use this form, you can refer to arguments in the 1list
symbolically. Each argument in an argument list has an offset from
the beginning of the list; a symbolic name is defined for the numeric
offset of each argument. If you use the symbolic names to refer to
the arguments in a list, you do not have to remember the numeric
offset (which 1is based on the position of the argument shown in the
macro format). There are two additional advantages to referring to
arguments by their symbolic names:

1. Your code is more readable.

2. If an argument list for a system service changes with a later
release of a system, the symbols will not change.

The offset names for all system service argument lists are formed by
concatenating the service macro name with $_ and the keyword name of
the argument, as follows:

name$_keyword

where name is the macro name for the system service and keyword is the
keyword argument.

Similarly, the number of arguments required by a particular macro |is
defined symbolically as:

name$_NARGS
Symbolic names for argument list offsets are defined automatically
whenever you use the $name form of the macro for a particular system

service.

For example, the SREADEF macro defines the following values:

Symbolic Name Value

READEFS_NARGS Number of arguments in the list (2)
READEFS$_EFN Offset of EFN argument (4)
READEF$_STATE Offset of STATE argument (8)

Thus, the $READEF macro can be coded to build an argument list for a
SREADEF system service call as follows:

READLST S SREADEF EFN=LsSTATE=TESTL

Later, the program may want to use a different wvalue for the STATE
argument in <calling the service. The following lines show how this
can be accomplished.

MOVAL. TEST2y READLSTHREADEF$.STATE
FREADEF..G READLST

The MOVAL instruction replaces the address TEST1 in the $READEF
argument list with the address TEST2; the $READEF_G macro calls the
system service with the modified list.

CALLING THE SYSTEM SERVICES

2.1.2.4 The $nameDEF Macro - You can also define symbolic names for
system service argument 1lists using the $nameDEF macro. This macro
does not generate any executable code; it merely defines the symbolic
names so they can be used later in the program. For example:

$QIODEF

This macro defines the symbol QIO$_NARGS and symbolic names for the
$QI0 argument list offsets.

You may need to use the $nameDEF macro if you code an argqument list to
a system service without using the $name macro form, or if a program
refers to an argument list in a separately assembled module.

2.1.3 The $name_S Form
The format of $name_ S macro call is:
$name_S argl, ..., argn
The macro generates code to push the arguments on the stack in reverse

order. The actual instructions used to place the arguments on the
stack are determined as follows:

e If the system service requires a value for an argument, either
a PUSHL instruction or a MOVZIWL to -(SP) instruction is
generated.

e If the system service requires an address for an argument, a
PUSHAB, PUSHAW, PUSHAL, or PUSHAQ instruction is generated,
depending on the context.

The macro then generates a call to the system service in the format:
CALLS #n,@#SYS$name

where n is the number of arguments on the stack.

2.1.3.1 specifying Arguments with the $name S Macro - When you use
the Sname_S macro to construct an argument Tist for a system service,
you can specify arguments in any of three ways:

1. By using keywords to describe the arguments. All keywords
must be followed by an equal sign (=) and then by the value
of the argument.

2. By using positional order, with omitted arguments indicated
by commas in the argument positions. You can omit commas for
optional trailing arguments.

3. By wusing both positional dependence and keyword names
(positional arguments must be listed first).

For example, S$SERVICE might have the format:
$SERVICE arga ,[argb] ,[argc] ,argd
Assume, for the purposes of this example, that ARGA and ARGB are

arguments that require vyou to code numeric values and that ARGC and
ARGD require you to code addresses.

CALLING THE SYSTEM SERVICES

The two following examples show valid ways of coding the $name_S macro
form to call $SERVICE.

Example 1: Using Keywords

MYARGD? +LONG 100

*

+

$SERVICE..S ARGE=#0yARGC=0y ARGA=¥%1 » ARGI=MYARGD

Example 2: Specifying Argquments in Positional Order

MYARGD? +L.ONG 100

+

.

S$SERVICE.S #1y s yMYARGD

The argument list is pushed on the stack as follows:

FUSHAL MYARGD
FUSHL. *0
FUSHL. #0
FUSHL. *1

Note that all arguments, whether coded positionally or with keywords,
must be wvalid assembler expressions, since they are used as source
operands in instructions. Contrast this with the arquments for the
$name argument 1list, which the assembler uses for data-generating
directives.

2.1.3.2 Example of $name S Macro Call - Since a Sname S macro
constructs the argument 1ist at execution time, addresses and values
can be supplied using register addressing modes. The SREADEF macro
used 1in the example of the $name G form can be coded as follows using
the $name_S form: -

BREADEF..S EFN=#1y8TATE=(R10)

where R10 contains the address of the longword to receive the status
of the flags.

This macro instruction is expanded as follows:
FUSHAL (R10O)

FUSHL. #1
caLLg F2y QESYEBREADEF

2.1.4 Conventions for Coding Arguments to System Services

The arguments must be specified according to the macro assembler rules
for operand coding and addressing.

CALLING THE SYSTEM SERVICES

The way to specify a particular argument depends on:

e Whether the system service requires an address or a value as
the argument. In Part II, the descriptions of the arguments
following a system service macro format always indicate if the
argument is an address. An indicator, number, or mask takes a
value as the argument.

e The form of the system service macro being used. The
expansions of the $name and Sname_S macros in the examples in
the preceding sections showed the code generated by each macro
form,

If you are in doubt as to whether you have coded a value or an address
argument correctly, you can assemble the program with the .LIST MEB
directive to check the macro expansion. See the VAX-11 MACRO Language
Reference Manual for more details.

Arguments that are optional to system services always have default
values, regardless of whether they are value or address arguments., In
almost every case, an optional argument defaults to 0.

When an argument is optional, the description of the argument always
describes what action the service takes when the default value is
used.

Address arguments may be optional when the system service returns
information; 1if the program does not require the information, you can
omit the optional argument.

2.1.4.1 Conventions for Coding Character String Arguments - Many
system services require ASCII text strings as arguments or return
ASCII text strings. Character strings are identified to system
services by specifying the address of a quadword character string
descriptor containing the 1length of the string and its starting
address. The string itself may or may not follow the descriptor.

Descriptors are explained fully in the VAX-11 Procedure Calling and
Condition Handling Standard, which is printed in the VAX-11
Architecture Handbook and in the VAX-11 Run-Time Library Reference
Manual. The format of a descriptor is as follows.

Relative byte location

Start of descriptor
class type length

address

length
is a word specifying the length of the string (in bytes).

type
is a byte specifying the data type of the argument. This field
is ignored by system services.

class
is a byte specifying the class of descriptor. This field is
ignored by system services; therefore, dynamic string

descriptors are treated as fixed-length string descriptors.

- CALLING THE SYSTEM SERVICES

address
is a longword containing the address of the string.

To define a descriptor for input to a service and specify the ASCII
data, you can use the .ASCID directive. For example,

DESC? JASCID /Hello!/

creates a descriptor followed by 6 bytes representing the string
"Hello!" The 1linker 1inserts a 1length value of 6 and the correct
address value in the descriptor when it binds the module into an
image.

To define a descriptor to hold data output from a service, define the
descriptor and allocate enough bytes to hold the data. For example,
if the service will return a string of up to 23 bytes, you can code
the descriptor and the 23-byte buffer as follows:

DESC? +LONG 23
+LONG DESC+8
+BLKEB 2

When a service returns a string, you can optionally specify the
address of a word to receive the actual length of the string returned.

Example of Coding a Character String Descriptor: The Translate
Logical Name ($TRNLOG) system service wuses character string
descriptors for both input and output: it accepts a logical name for
input and returns the equivalence name, if any, for the logical name.
The following example shows how these descriptors might be coded to
translate the logical name CYGNUS.

CYGBNUSDESC? +ASCIN ZCYGNUS/ SRESCRIFTOR FOR CYGNUS LOGICAL NAME
NAMEDESC FROESCRIFTOR FOR TRANSLATED QUTRUT
+LONG 63 FLENGTH OF THE RUFFER
+ LLONG NAMEDESCHS FANDRESS OF THE RUFFER
+BLKR 63 $THE BUFFER
NAMELENGTH?
+ BLKW 1 FRECEIVE QUTFUT LENGTH HERE

*

*

$TRNL.OG..S LOGNAM=CYGNUSDESCy RELLEN=NAMELENGTHy -~
RELBUF =NAMEDESC

The input string for this service call 1is defined at the label
CYGNUSDESC. The output string that is returned from the service will
be written into the 63-byte buffer defined in the descriptor at the
label NAMEDESC. The actual 1length of the returned string will be
written in the word at the label NAMELENGTH.

When an output buffer is provided for a character string and the
string returned is 1longer than the buffer, the string returned is
truncated, and the service returns a status code (SS$ BUFFEROVF)
indicating that fact. (Note that SS$ BUFFEROVF is a "success" return
code. Status codes returned by system services are discussed 1in
Section 2.1.5.)

CALLING THE SYSTEM SERVICES

2.1.4.2 Conventions for Coding Numeric Values - Many system services
accept numeric values for particular arguments. In some cases, the
services check only the low-order portion of the 1longword argument
they are passed. These cases are:

® Indicators. Indicators can only have values of 0 or 1.
System services check only the 1low-order bit of these
arguments.,

e Event flag numbers. Event flag numbers can have values of 0
through 255. System services check only the low-order byte of
these arguments.

® Access modes. Access modes canh have values of 0 through 3.
System services check only the 1low-order 2 bits of these
arguments.

e Channel numbers. Channel numbers as input arguments are
passed by immediate value. However, if you use the $service
or $service_S form of the call, specify the 1label associated
with the address containing the channel number; for example:

$0IO0_S «++,CHAN=DEVCHAN, ...

The macro expansion in these cases places the value of the
channel number onto the stack. System services check only the
low-order word of an input CHAN argument.

When you code any of the above types of argument, the high-order
portion of the argument should be zeros.

Note that many system services use access modes to protect system
resources, and thus employ a special convention for interpreting
access mode arguments (keyword ACMODE). You can specify an access
mode wusing a numeric wvalue or a symbolic name. The access modes,
their numeric values, and symbolic names are:

Access Numeric Symbolic
Mode Value Name
Kernel 0 PSLSC KERNEL
Executive 1 PSL$C EXEC
Supervisor 2 PSL$C SUPER
User 3 PSL$C _USER

The symbolic names are defined in the SPSLDEF macro.

When you specify an access mode, the actual mode used is determined
after the service has compared the specified access mode with the
access mode from which the service was called. If the modes are
different, the 1less privileged access mode is always used. Because
this operation results in an access mode with a higher numeric wvalue
(when the access mode of the caller is different from the specified
access mode), the access modes are said to be maximized.

Since much of the code you write will execute in user mode, you can
omit the access mode argument. The argument value defaults to 0, and
when this value is compared with the current execution mode, the mode
with the higher value, 3 for user mode, is used.

CALLING THE SYSTEM SERVICES

2.1.5 Status Codes Returned from System Services

When a system service finishes execution, a numeric status value Iis
always returned in general register RO. Successful completion is
indicated by a status code with the low-order bit set., The low-order
three bits, taken together, represent the severity of the error.
Severity code values are:

Value Meaning Symbolic Name
0 Warning STSSK_WARNING
1 Success STSSK_SUCCESS
2 Error STS$K_ERROR
3 Informational STSSK_INFO
4 Severe or fatal error STS$SK_SEVERR
5-7 Reserved

The symbolic names are defined in the S$STSDEF macro.

The remaining bits in the low-order word «classify the particular
return condition. The high-order word indicates that a system service
issued this status code.

Each numeric status code has a unique symbolic name in the format:
SS$_code

where code 1is a mnemonic describing the return condition. For
example, a successful return is usually indicated by

SS$_NORMAL

An example of an error return status code is:

SS$_ACCVIO

This status code indicates that an access violation occurred because a
service could not read an input field or write an output field.

The symbolic definitions for status codes are included in the default
system 1library. You can obtain a listing of these symbolic codes at
assembly time by invoking the system macro S$SSDEF (see Appendix A).
Use the symbolic names for system status codes to check return
conditions,

2,1.5.1 1Information Provided by Status Codes -~ Status codes returned
by system services may provide information; that is, they do not
always Jjust indicate whether or not the service completed
successfully. SS$ NORMAL is the usual status code indicating success,
but others are defined. For example, the status code SS$_BUFFEROVF,
which 1is returned when a character string returned by a service is
longer than the buffer provided to receive 1it, is a success code.
This status code, however, gives the program additional information.

Warning returns and some error returns indicate that the service may
have performed some part, but not all, of the requested function.

The possible status codes that each service can return are described
with the individual service descriptions in Part II. When you are
coding calls to system services, read the descriptions of the return
status codes to determine whether you want the program to check for
particular return conditions.

CALLING THE SYSTEM SERVICES

2.1.5.2 Testing Return Status Codes - To test for successful
completion following a system service call, the program can test the
low-order bit of RO and branch to an error checking routine if this
bit is not set, as follows:

BLRC ROserrlabel FERROR IF LOW ERIT CLEAR

The error checking routine may check for specific values or for
specific severity 1levels. For example, the following instruction
checks for an illegal event flag number error condition:

CMPL. #584$.. ILLEFCsRO #1858 EVENT FLAG NUMBER ILLEGAL?

Note that return status codes are always 1longword values; however,
the high-order words of all status codes returned by system services
are always the same.

2.1.5.3 System Messages Generated by Status Codes - When you execute
a program with the DCL command RUN, the command interpreter uses the
contents of RO to issue a descriptive message if the program completes
with a nonsuccessful status.

The following example shows a simple error-checking procedure in a
main program:

$REALEF..8 EFN=#64»STATE=TEST
BSBW ERROR

*

ERROR?: RBLRC RO»10% FCHECK REGISTER O
REE FSUCCESSy RETURN
1042 RET FEXIT WITH RO STATUS

Following a system service call, the BSBW instruction calls the
subroutine ERROR. The subroutine checks the low-order bit in register
0 and if the bit is clear, branches to a RET instruction that causes
the program to exit with the status of RO preserved. Otherwise, the
subroutine issues an RSB to return to the main program.

If the event flag cluster requested in this call to $READEF 1is not
currently available to the process, the program exits and the command
interpreter displays the message:

ZOYSTEM~F~UNASEFCy unassociated event flag cluster

The keyword UNASEFC in the message corresponds to the status code
SS$_UNASEFC.

2.1.5.4 sSpecial Return Conditions - Two process execution modes
affect how control is returned to the calling program when an error
occurs during the execution of a system service. These modes are:

e Resource wait mode

e System service failure exception mode
If you change the default setting for either of these modes 1in a
program, the program must handle the special return conditions that

result. The next two sections discuss considerations for using these
modes.

CALLING THE SYSTEM SERVICES

Resource Wait Mode: Many system services require certain system
resources for execution, These resources include system dynamic
memory and process quotas for I/0 operations. Normally, when a system
service is called and a required resource 1is not available, the
process is placed in a wait state until the resource becomes
available. Then, the service completes execution. This mode is
called resource wait mode.

In a real-time environment, however, it may not be practical or
desirable for a program to wait. 1In these cases, you can choose to
disable resource wait mode, so that when a required resource is
unavailable, control returns immediately to the calling program with
an error status code. You can disable (and re-enable) resource wait
mode with the Set Resource Wait Mode ($SETRWM) system service.

How a program responds to the unavailability of a resource depends
very much on the application and the particular service that is being
called. 1In some instances, the program may be able to continue
execution and retry the service call later. 1In other instances, it
may be necessary only to note that the program is being required to
wait.

System Service Failure Exception Mode: When an error occurs during
the execution of a system service, control normally returns to the
next instruction in the calling program, which can check the return
status code in RO to determine the success or failure of the service
call.

To detect and respond to system service call failures, you can use the
condition-handling mechanism of VAX/VMS to respond to system service

~ failures. Then, when an error occurs, a software exception condition

is generated, and control is passed to a condition-handling routine.

This mode is called system service failure exception mode, and can be
enabled (and disabled) with the Set System Service Failure Exception
Mode ($SETSFM) system service. For example:

FHETEFM.LE ENBFI.G=d%)

This call enables the generation of exceptions when errors or severe
errors occur during execution of a system service (exceptions are not
generated for warning returns).

Certain formatting and conversion services are not affected by the
enabling of system service failure exception mode. The following
services will not generate exceptions when failures occur and system
service failure exception mode is enabled:

FASCTIM

BRINTIM

$FAQN/$FADL

$GETMSG

SPUTMSG
If you code a program to execute with this mode enabled, you can code
a condition-handling routine. Information on condition handlers is
provided in Chapter 9, "Condition-Handling Services." If no

user-specified routine 1is available when an exception occurs and the
program was run with the DCL command RUN, the default condition
handler causes the program to exit and displays descriptive
information about the exception condition.

CALLING THE SYSTEM SERVICES

2.2 HIGH-LEVEL LANGUAGE CODING

Each high-level language supported by VAX/VMS provides some mechanism
for calling an external procedure and passing arguments to that
procedure. The specifics of the mechanism and the terminology used,
however, vary from one language to another.

VAX/VMS system services are external procedures that accept arguments.
There are three ways to pass arguments to system services:

e By immediate value. The argument is the actual value to be
passed (a nhumber or a symbolic representation of a numeric
value)

e By address (also called "by reference"). The argument is the
address of an area or field that contains the value. An
argument passed by address is usually expressed as a reference
name or label associated with an area or field. (In fact, one
common error is to pass a humeric value without indicating
that it 1is passed by value; if the compiler assumes the
numeric value is an address, a run-time "access violation"
error occurs when, for example, the image tries to access
virtual address 0 or 1.)

e By descriptor. This argument is also an address, but of a
special data structure called a character string descriptor.
The format of a descriptor is explained in the next section.

The description of each service in Part II of this manual indicates
how each argument is to be passed. Phrases such as "an address" and
"address of a character string descriptor" identify address and
descriptor arguments, respectively. Words like "indicator," "number,"
"value," or "mask" indicate an argument passed by immediate wvalue.

Some services also require service-specific data structures that
indicate functions to be performed or hold information to be returned.
For example, the Get Job/Process Information ($GETJPI) service
requires you to define an item 1list describing the specific
information requested and pointing to buffers to receive the
information. The description of this service in Part II includes the
format of the item list and a simple example in VAX-11 MACRO. You can
use this information and information from your programming language
manuals to define such an item list.

When a service returns control to your program, it places a return
status value 1in the general register RO. The value in the low-order
word indicates either that the service completed successfully or that
some specific error prevented the service from performing some or all
of its functions. After each call to a system service, you must check
whether it completed successfully. You can also test for specific
error conditions. (See Section 2.2.2 for more information on return
status values.)

2.2.1 Descriptors

A character string descriptor 1is a quadword (8-byte) area that
contains the length of the string data and the starting address of the
data. In most cases, the compiler automatically generates the
descriptor and the data; in some cases, you may need to define all
the fields yourself. (See the appropriate language user's guide.)

CALLING THE SYSTEM SERVICES

Descriptors are explained fully in the VAX-11 Procedure Calling and
Condition Handling Standard, which appears in the VAX-1ll Architecture
Handbook and in the VAX-11] Run-Time Library Reference Manual, The
format of a descriptor is as follows.

Relative byte location —~—

0 Start of descriptor

class type length

address of data

)]
L
b}

\49

e Length of data. Specifies the number of ASCII characters for
the data or the number of bytes in the buffer; this value is
placed in the low-order word of the longword. In some cases
you may want to move a value into this field during program
execution.

e Type. Specifies the data type of the argument. This byte is
ignored by system services.

e Class. Specifies the class of descriptor. This byte is
ignored by system services; therefore, dynamic string
descriptors are treated as fixed-length string descriptors.

e Address of data. Indicates the starting address of the data
in a manner appropriate to your language. You may have to
specify the reference name or label associated with the data.

e Data. If the descriptor is for input data for the service,
specify the data. If the descriptor is for output from the
service, simply allocate enough bytes to hold the data
returned by the service. (The data 1is not part of the
descriptor.)

2.2.2 Return Status

The operating system does not automatically handle system service
failure or warning conditions; you must test for them and handle them
yourself, This contrasts with the operating system's handling of
exception conditions detected by the hardware or software; the system
handles these exceptions by default, although you can intervene in or
override the default handling by declaring a condition handler (see
Chapter 9, "Condition Handling Services").

Each high-level language has some mechanism for obtaining the return
status, which is stored as a binary value in a longword. Depending on
your specific needs, you can test just the 1low-order bit, the 1low
order three bits, or the entire value:

® The low-order bit indicates successful 1 or nonsuccessful (0)
completion of the service.

CALLING THE SYSTEM SERVICES

e The low-order three bits, taken together, represent the
severity of the error. Severity code values are:

Value Severity Level

0 Warning

1 Success

2 Error

3 Informational

4 Severe (or fatal) error
5-7 (Reserved)

e The remaining bits (3 through 31) <classify the particular
return condition and the operating system component that
issued the status code. For system service return status
values, the high-order word (bits 16 through 31) contains
zeros.

Each numeric status code has a symbolic name in the format:
SS$_code

where "code" is a mnemonic code describing the return condition. For
example, the most common successful return is indicated by SS$ NORMAL,
and a common error status code is SS$ ACCVIO ("access violation,"
indicating that the service could not read an input argument or write
an output argument).

The symbols associated with the different return status value are
defined in the default system library.

2.2.2.1 Information Provided by Status Codes - Status codes returned
usually indicate whether the service completed successfully, although
sometimes they simply provide information to the «calling program.
Moreover, a "success" return (severity level =1) does not necessarily
mean that the program achieved the desired result, but only that the
service completed all its functions and returned control to the
calling program. For example, the status code SS$ BUFFEROVF, which is
returned when a character string returned by a service is longer than
the buffer provided to receive it, is a "success" code.

Warning returns and some error returns indicate that the service may
have performed part but not all of the requested function(s).

The possible status codes that each service can return are described
with the individual service descriptions in Part II. When you are
coding calls to system services, read the descriptions of the return
status codes to determine whether you want the program to check for
particular return conditions.

2.2.2.2 Testing the Return Status Code - Each language provides some
mechanism for testing the return status. Often you need only check
the 1low~order bit, such as by a test for TRUE (success or
informational return) or FALSE (error or warning return).

To check the entire value for a specific return condition, each
language provides a way for vyour program to determine the values
associated with specific symbolically-defined codes. You should
always use these symbolic names when vyou code tests for specific
conditions.

CALLING THE SYSTEM SERVICES

Appendix A, Section A.7, lists the symbolic codes and their meanings.
For information on how to test for these codes, see the user's guide
for your programming language.

2.2.2.3 8Special Return Conditions - Two process execution modes
affect how control is returned to the calling program when an error
occurs during the execution of a system service. These modes are:

e Resource wait mode
e System service failure exception mode

If you choose to change the default setting for either of these modes,
your program must handle the special conditions that result.

Resource Wait Mode: Many system services require certain system
resources for execution. These resources include system dynamic
memory and process quotas for I/0 operations. Normally, when a system
service 1is called and a required resource is not available, the
program is placed in a wait state until the resource becomes
available, Then the service completes execution., This mode is called
resource wait mode.

In a real-time environment, however, it may not be practical or
desirable for a program to wait., 1In these cases you can choose to
disable resource wait mode, so that when such a condition occurs,
control returns immediately to the calling program with an error
status code. You can disable (and reenable) resource wait mode with
the Set Resource Wait Mode ($SETRWM) system service.

How a program responds to the unavailability of a resource depends
very much on the application and the particular service that is being
called. 1In some instances, the program may want to continue execution
and retry the service call later. In other instances, it may be
necessary only to note that the program is being required to wait.

System Service Failure Exception Mode: System service failure
exception mode determines whether control is returned to the caller in
the normal manner following an error in a system service call, or
whether an exception is generated. System service failure exception
mode is disabled by default; the calling program receives control
following an error. You can enable and disable system service failure
exception mode with the Set System Service Failure Exception Mode
($SETSFM) service.

Certain formatting and conversion services are not affected by the
enabling of system service failure exception mode. The following
services will not generate exceptions when failures occur and system
service failure exception mode is enabled:

$SASCTIM
SBINTIM
SFAO/SFAOL
SGETMSG
$PUTMSG

It is recommended that high-level language programs not enable system
service failure exception mode, except perhaps in certain debugging
situations. If you enable system service failure exception mode and
do not declare vyour own condition handler, many error messages
displayed at run time will be meaningless. High-level 1language
compilers generate calls to system services for many statements or
instructions in source programs. (For example, reads and writes to

CALLIRG THE SYSTEM SERVICES

files generate calls to VAX-11 RMS, which uses the $QI0O and $QIOW
services.) If you enable system service failure exception mode, many
different types of errors-- such as an I/0 attempt to a nonexistent
device or non-numeric input to a math routine-- will generate the
message "$SYSTEM-F-SSFAIL, system service failure exception,...".

2.2.3 Obtaining Values for Other Symbolic Codes

In addition to the symbolic codes for specific return conditions, many
individual services also have symbolic codes for offsets, identifiers,
or flags associated with these services., For example, the Create
Process (SCREPRC) service, which is used to create a subprocess or a
detached process, has symbolic codes associated with the various
privileges and quotas you can grant to the created process,

Appendix A lists the system symbolic definition macros available to
the VAX-11 MACRO programmer, as well as the symbols defined and their
meanings for several macros. Page references for symbols and meanings
for the remaining macros can be found in the index.

If your language has a method of obtaining values for these symbols,
this method 1is explained in the user's guide. If your language does
not have such a method, you may do the following:

e Write a short VAX-11l MACRO program containing the desired
macro(s).

e Assemble the program and generate a listing. Using the
listing, find the desired symbols and their hexadecimal
values.

e Define each symbol with its value within your source program.

For example, to use the Get Job/Process Information ($SGETJPI) service
to find out the accumulated CPU time (in 10-millisecond ticks), you
must obtain the value associated with the item identifier JPIS_CPUTIM.
To do this:

e Create the following two-line VAX-1ll MACRO program named
JPIDEF.MAR (although you may choose any name you wish):

$JFIDEF
+END

e Assemble the program:
$ MACROZILLIST JPIDEF

e Find the value of JPIS_CPUTIM and define the symbol in your
program,

2.3 INTERPRETING THE CODING EXAMPLES

Chapters 3 through 10 contain many coding examples (using VAX-11
MACRG) designed to familiarize you with the system services and their
arguments. The examples do not show complete programming sequences;
rather, they show only the code and/or arguments that are pertinent to
a particular discussion.

CALLING THE SYSTEM SERVICES

In some of the more complex examples, explanatory text is keyed to the
example using a special numeric symbol, for example, 1.
Although the examples are coded using VAX-1l MACRO, they are designed
to be as meaningful as possible to high-level language programmers.
Figure 2-1 provides additional help to high-level language programmers
in interpreting the MACRO examples. This figure shows a portion of
VAX-11 MACRO code and the "equivalent"™ in the following languages:

VAX-11 FORTRAN

VAX-11 COBOL-74

VAX-11] BLISS-32

VAX-11 CORAL

VAX-11 PASCAL

VAX-11 BASIC

CALLING THE SYSTEM SERVICES

MACRO Example
CYGDES? .ascxneacvenus/
NAMDES: JLONG 43
+LLONG NAMDES+6@
+BLKR 63
NAMLEN: JELKW 1@

+

JENTRY ORION,0 ©

DSBMSK=#4
OxrLEc ROy ERROR

*

+END

FORTRAN Equivalent

SUBROUTINE ORION@

*

*

CHARACTERX63 NAMDES @
INTEGERX*2 NAMLEN@
INTEGERX4 SYSSTRNLOG

.

FRESCRIPTOR FOR CYGNUS STRING
FDESCRIPTOR FOR OUTFUT BUFFER

$OUTFUT BUFFER (63 RYTES)
FWORD TO RECEIVE LENGTH

FROUTINE ENTRY FOINT & MASK
@ $TRNLDG..S LOGNAM=CYGDES » RSLLEN=NAMLEN » RELEBUF=NAMDES »
$HON’T SEARCH FROCESS TARBRLE
$CHECK FOR ERROR

'FROCEDURE. ORION

HOUTFUT

RUFFER

TWORD TO RECEIVE LENGTH

I DEFINE

SYSTEM SERVICE FUNCTION

. 2]
OICONE = SYS$TRNLOG(/CYGNUS’ vy NAMLENy NAMIESy » » ZVAL. (4))

@IiF (.NOT. ICODE) GOTO 90000

+

*

ENI

' BRANCH

IF ERROR

Figure 2-1 1Interpreting MACRO Examples

CALLING THE SYSTEM SERVICES

MACRO Notes

o
(2]

A routine name and entry mask show the beginning of
executable code in a routine or subroutine.

The input character string descriptor argument 1is defined
using the .ASCID directive.

For an output character string argument, define the two
longwords (length and address) for the descriptor, and
allocate enough bytes to hold the output data.

The MACRO directive .BLKW reserves a word to hold the output
length.

Call the service by a macro name that has the suffix _S or
G.

You can specify arguments by keyword (as in this example) or
in positional order. (Keyword names correspond to the names
of the arguments shown in lowercase 1in the system service
format descriptions in Part 1II.) If you omit any optional
arguments (that is, accept the defaults), you can omit them
completely if you specify arguments by keyword, but you must
code the comma for each missing argument if you specify
arguments by positional order.

Use the number sign (#) to indicate a literal value for an
argument.

The BLBC instruction causes a branch to a subroutine named
ERROR (not shown) if the low bit of the status code returned
from the service 1is clear (low bit <clear = failure or
warning). You can use a BSBW instruction to branch
unconditionally to a routine that checks the return status.

FORTRAN Notes

o
12

3]
12
(5]

The routine and its entry mask are defined by the SUBROUTINE
statement.

Specify the input character string directly in the system
service call. The compiler builds the descriptor.

The CHARACTER*63 declaration allocates 63 bytes for the
output data. The compiler builds the descriptor.

The INTEGER*2 declaration reserves a word for the output
value,

Call the service using the SYS$ form of the service name.

Enclose the arguments in parentheses, and code them in
positional order only. Code a comma for each optional
argument that you omit (including trailing arguments).

Use the $%VAL function to indicate a 1literal value for an
argument.

The IF statement makes a FALSE logical test following the
function reference. (A FALSE value means that the low bit of
the status code is zero, indicating an error or warning.)

CALLING THE SYSTEM SERVICES

MACRO Example

CYGDES? .ﬁQCI[ﬁzCYGNUS/ FDESCRIFTOR FOR CYGNUS STRING
NAMDES? JL.LONG 63 FOESCRIFTOR FOR OUTFUT BUFFER
+LONG NAMDES+8@)
+BLKR 63 SOUTPUT BUFFER (63 BYTES)
NAMLEN: JBLKW 1@ SWORD TO RECEIVE LENGTH
+JENTRY ORION-0@ SROUTINE ENTRY FOINT & MASK
@ $TRNLOG..S LOGNAM=CYGDES y RSLLEN=NAMLEN » RELBUF =NAMDES » ~
NSRMSK=#4 FOON’T SEARCH FROCESS TABLE
OEi.EC ROYERROR FCHECK FOR ERROR
+HEND

COBOL Equivalent

THENTIFICATION DIVISION.
PROGRAM-ID, ORION.@

*

01 CYBDES FIC X(4) VALUE *CYGNUS".©®
01 DUMMY~ARG FIC $9(9) COMF VALUE 0.
01 NAMUES FIC X(63) VALUE SPACES.@
01 NAMLEN PIC $9¢4) COMP.@
01 DISABRLE-MASK PIC $9(9) COMF VALUE 4,
01 RESULT FIC $9(9) COMF.
88 SUCCESSFUL VALUE 1.

+

FROCEDURE DIVISTON.
START~ORTON .
CALL "SYS$TRNLOG'@
USING BY DESCRIFTOR CYGDES»
BY REFERENCE NAMLEN»
BY DESCRIFTOR NAMOES
RBY VALUE DUMMY-ARGy DUMMY-ARGy DISARLE-MASK
GIVING RESULT.
IF NOT SUCCESSFUL O
GO TO ERROR-CHECK.

STOF RUN.

Figure 2-1 (Cont.) Interpreting MACRO Examples

CALLING THE SYSTEM SERVICES

MACRO Notes

A routine name and entry mask show the beginning of
executable code in a routine or subroutine.

The input character string descriptor argument 1is defined
using the .ASCID directive,

For an output character string argument, define the two
longwords (length and address) for the descriptor, and
allocate enough bytes to hold the output data.

The MACRO directive .BLKW reserves a word to hold the output
length.

Call the service by a macro name that has the suffix _S or
G.

You can specify arguments by keyword (as in this example) or
in positional order. (Keyword names correspond to the names
of the arguments shown in lowercase in the system service
format descriptions in Part 1II.) If you omit any optional
arguments (that is, accept the defaults), you can omit them
completely if you specify arguments by keyword, but you must
code the comma for each missing argument if you specify
arguments by positional order.

Use the number sign (#) to indicate a literal value for an
argument.

The BLBC instruction causes a branch to a subroutine named
ERROR (not shown) if the low bit of the status code returned
from the service 1is clear (low bit clear = failure or
warning). You can use a BSBW instruction to branch
unconditionally to a routine that checks the return status.

COBOL Notes

The PROGRAM-ID paragraph identifies the program by specifying
the program name, which is the global symbol associated with
the entry point. The compiler builds the entry mask.

Define the input string as alphanumeric (ASCII) data. The
compiler generates a descriptor when you specify "USING BY
DESCRIPTOR" in the CALL statement,

Allocate enough bytes for the alphanumeric output data. The
compiler generates a descriptor when you specify "USING BY
DESCRIPTOR" in the CALL statement,

This definition reserves a signed word with COMP (binary)
usage to receive the output value.

Call the service using the "SYS$" form of the service name,
and enclose the name in quotes.

Specify arguments in positional order only, with "USING..."
You cannot omit arguments; if you are accepting the default
for an argument, you must explicitly pass the default value
(DUMMY~ARG in this example).

You can specify explicitly how each argument is being passed:
BY DESCRIPTOR, BY REFERENCE (that 1is, by address), or BY
VALUE. You can also implicitly specify how an argument is
being passed: through the default mechanism (BY REFERENCE),
or through association with the last specified mechanism
(thus, the 1last two arguments in the example are implicitly
passed BY VALUE). Note, however, that all defaulted
arguments must be passed BY VALUE (even address arguments).

The IF statement tests RESULT for a value of 1 (SS$_NORMAL).
If RESULT is not equal to 1, control is passed to the routine
ERROR-CHECK.

CALLING THE SYSTEM SERVICES

MACRO Example

CYGRES! ASCIN /CYBNUS/ SDESCRIPTOR FOR CYGNUS STRING
NAMDES?: LONG &3 SDESCRIFTOR FOR OUTFUT BUFFER
LONG NAMDES+8 ©
+EBLKE &3 $OUTFUT BUFFER (63 RYTES)
NAMLEN! EBLKW 1@ SWORD TO RECEIVE LENGTH

L]

‘ENTRY ORION>0 @ FROUTINE ENTRY FOINT & MASK
O $TRNLOG..S LOGNAM=CYGDES y RSLLEN=NAMLEN » REL BUF =NAMDES » -~
DSEMSK=%4 FDON‘T SEARCH FROCESS TARLE
O r.BC ROSERROR $CHECK FOR ERROR

*

+END

BLISS Equivalent
MODULE ORIONCIDENT = 2]/)m

BEGIN
EXTERNAL ROUTINE

ERROR.FROCE NOVALUE S U Error processing routine
LIBRARY “SYSSLIBRARY (STARLET L3275 Voldibrary containing UMS macros Cineluding

PORTRNLOGY . This declaration is recuired,
GLOBAL ROUTINE ORION! NOVALUE:= @

BREGIN
OWN
€)NAM$TR: VECTORLEA3y BYTE s o Treanslated string bhuffer
NAMDES S VECTORE2D INITIALCHZNAMSTRY» + T ins descristor
e NAMLEN?D WORDS U Trarnsl 1 i
LOCAL U Return status From swslemn service
STATUGS

MACKRO g
NESCRIFTOR(S) = ! Macro to build descristor for string literal
UPLITC ZCHARCOUNT (5 y UPLIT BYTEC(S)) %5

OsTATUS = $TRNLOG(LOGNAM = DESCRIFTORC CYGNUS) »
RELLEN=NAMLENy ROLBUF =NAMOES » DSRMEK=4) 3

O 1F NOT .STATUS THEN ERROR.FROCC.STATUS)

FNI S

Figure 2-1 (Cont.) Interpreting MACRO Examples

CALLING THE SYSTEM SERVICES

MACRO Notes

o
2]

A routine name and entry mask show the beginning of
executable code in a routine or subroutine.

The input character string descriptor argument is defined
using the ,ASCID directive,

For an output character string argument, define the two
longwords (length and address) for the descriptor, and
allocate enough bytes to hold the output data.

The MACRO directive .BLKW reserves a word to hold the output
length.

Call the service by a macro name that has the suffix _S or
G.

You can specify arguments by keyword (as in this example) or
in positional order. (Keyword names correspond to the names
of the arguments shown in lowercase in the system service
format descriptions in Part 1II.) If you omit any optional
arguments (that is, accept the defaults), you can omit them
completely if you specify arguments by keyword, but you must
code the comma for each missing argument if vyou specify
arquments by positional order.

Use the number sign (#) to indicate a literal value for an
argument.

The BLBC instruction causes a branch to a subroutine named
ERROR (not shown) if the low bit of the status code returned
from the service 1is <clear (low bit clear = failure or
warning). You can use a BSBW instruction to branch
unconditionally to a routine that checks the return status.

BLISS Notes

The routine is defined by a GLOBAL ROUTINE declaration.

Define a constant input string argument using the DESCRIPTOR
macro.

The declarations of NAMSTR and NAMDES reserve space for a
63-byte output buffer and a 2-longword output buffer
descriptor. The INITIAL attribute initializes the descriptor
at compilation time.

The word element NAMLEN will receive the output string value.
Invoke the macro by its service name, without a suffix.

Enclose the arguments in parentheses, and specify them by
keyword. (Keyword names correspond to the names of the
arguments shown in lowercase in the system service format
descriptions in Part II.)

Since BLISS wuses call-by-value argument transmission, no
special notation is required in passing DSBMSK=4,

The return status, which is assigned to the variable STATUS,
is tested for TRUE or FALSE. FALSE (low bit = 0) indicates
failure or warning.

CALLING THE

MACRO Example
.ASCIDezCYGNUS/
+LLONG &3

+LLONG NAMDES+8 @
+BLKE 63

+ELKW 1@

*

CYGRES ¢
NAMDES ¢

NAMLEN?

ENTRY ORION+0@

SYSTEM SERVICES

SDESCRIPTOR FOR CYGNUS STRING
FDESCRIPTOR FOR OUTPUT BUFFER

FOUTPUT BUFFER (63 RYTES)
SWORD TO RECEIVE LENGTH

FROUTINE ENTRY FOINT & MASK

@O $TRNLOG..S LLOGNAM=CYGIES s RSLLEN=NAMLEN y RSLEUF =NAMDES » -

NSEMEK=¥4
Okrl.EC ROYERROR
+END

CORAL Equivalent

CORAL. EXAMPLE

FOON’T SEARCH PROCESS TARLE
$CHECK FOR ERROR

"YVALUE INTEGER® 5
*LOCATIONY “INTEGER” "5
"LOCATION’ "BYTE " 3§

SYSETRNLOG(VIvLI»yVIsLESLRYVI)) ¥

LOC "LOCATION" "

COMMON” C/LAREL " ORION)
"DEFINE’ VI
‘DEFINE” .I
‘DEFINE’ LE
‘LIERARY’ @ ¢ INTEGER’ ' FROCEDURE
‘ENTER” ORTONS
SEGMENT ORION
TREGIN'
NEFINE
‘DEFINE’ NUL.L.

‘INTEGER
‘BYTE’ ‘ARRAY *

©

"Loans

STATUSyOUTSTRING
NAMGTRL 136304
FINTEGER 7ARRAY " NAMDESL]

(srace for return strinsg)
121% (srace for retuvn string descristor)

OVERLAY S NAMDESEL] ‘WITHY INTEGER’ NAMLENS
C’NAMLEN3263§ (et size in descvistor)

NAMOESL211=1.0C (NAMSTRE L]
]

OQUTSTRING S =1.0C (NAMDESI 1

)é (et address in descrirtor)
) (zo0imt to descrirtor)

OSTATUS=SYSSTRNLOG (*CYGNUS " y NAMLEN s OUTSTRING y NULL s NULL. v 4) §

COMMENT Y

Simce NAMLEN has been urdsted QUTSTRING is
now usable
i another swstem service or OTH

returned string
callsd

to rerresent the

O/ iF’ STATUS ‘MASK’ 1 = O ‘THEN’

‘REGINY
CCOMMENT
CENI 3
COMMENT 7 Other code

8%

TEND§
FINISH?

Figure 2-1 (Cont.)

reauirec bw

Error action would #o heres

would so here
the arplicationsy

Interpreting MACRO Examples

CALLING THE SYSTEM SERVICES

MACRO Notes

A routine name and entry mask show the beginning of
executable code in a routine or subroutine.

The input character string descriptor argument is defined
using the .ASCID directive.

For an output character string argument, define the two
longwords (length and address) for the descriptor, and
allocate enough bytes to hold the output data.

The MACRO directive .BLKW reserves a word to hold the output
length.

Call the service by a macro name that has the suffix _S or
G.

You can specify arguments by keyword (as in this example) or
in positional order. (Keyword names correspond to the names
of the arguments shown in lowercase in the system service
format descriptions in Part II.) If you omit any optional
arguments (that is, accept the defaults), you can omit them
completely if you specify arguments by keyword, but you must
code the comma for each missing arqument if you specify
arguments by positional order.

Use the number sign (#) to indicate a literal value for an
argument.

The BLBC instruction causes a branch to a subroutine named
ERROR (not shown) if the low bit of the status code returned
from the service is clear (low bit <clear = failure or
warning). You can use a BSBW instruction to branch
unconditionally to a routine that checks the return status.

CORAL Notes

The system service routine and all 1its arguments are
specified in a 'LIBRARY' statement. CORAL manipulates
strings by pointers to descriptors. These pointers may be
contained in an integer variable so string arguments are

specified as 'VALUE' 'INTEGER'. All other argument
specifications are taken directly from the specification of
the system service in this manual. (Note: this example

shows Release 1 of VAX-11 CORAL. The implementation of
'VALUE''INTEGER' may be changed in a subsequent release of
the language. Refer to the VAX-11 CORAL User's Guide.)

Specify the input character string directly in the system
service call. CORAL builds string descriptors for string
literals, so the input string may be passed directly as an
argument.

While CORAL passes arrays by descriptor, the VAX/VMS
descriptor for a byte array is different from the descriptor
for a character string, so it 1is necessary to build a
descriptor for the output string.

CORAL does not support a 16-bit data type. If the return
length was required in a different context it might be
necessary to extract the low-order 16 bits from the return
location. Here the high-order bits are 2zeroed by the
assignment to NAMLEN. By using the same location for
available length and returned 1length, a result string
descriptor is automatically constructed for further use.

Use the SYS$ form of the system service, and code the
arguments in positional order in parentheses.

CORAL does not permit arguments of a call to be omitted.
VAX/VMS system services accept the address of location 0 to
represent the address of an omitted argument. The NULL macro
provides this in the example.

The low order bit of STATUS is extracted and compared with 0
to determine the success of the system service call.

CALLING THE SYSTEM SERVICES

MACRO Example

CYGDES .ASCIDG/CYGNUS/ $DESCRIFPTOR FOR CYGNUS STRING
NAMOES?! .LONG &3 $DESCRIFTOR FOR OUTFUT BUFFER
LONG NAMIES+8 ©
+BLKE 43 SOUTFUT RUFFER (63 BYTES)
NAMLEN: .BLKW 1@ SWORD TO RECEIVE LENGTH
{ENTRY ORION»O@ $ROUTINE ENTRY POINT & MASK
@ $TRNLOG..S LOGNAM=CYGLES s RSLLEN=NAMLENRSLEUF=NAMDES » ~
OSEMSK=%4 SOON’T SEARCH PROCESS TARLE
O ELEC ROYERROR $CHECK FOR ERROR
+END

PASCAL Equivalent

FROGRAM ORION?

*

TYPE FOS.WORD = 0.,.465535%
SUBS3E = 1,.63%
WORDL.TYPE = PACKED RECORI
SHORTWD ¢ FOS.WORD
END$
STRING.BUF = PACKED ARRAY [1..1281 OF CHARS

ol

va ICODE 3 INTEGERS
O NAMLEN ¢ WORDLTYFES
© NAMDES ! STRING.EUF}

+
*

+

FROCEDURE. ERROR§

*

FUNCTION SYS$TRNLOG (XSTRESCR CYGNUS ¢ FACKED ARRAY LSURSE31 OF CHAR?
(1) VAR RSLLEN ¢ WORDL.TYPES?
ZSTHESCR RSLRBUF ¢ STRING..BUF S
ZIMMED TARLEy ACMODEy NSEMSK ¢ INTEGER) ! INTEGERS$
EXTERNS
REGIN

L4

. 2
@ 1CONE = SYS$TRNLOG (/CYGNUS’y NAMLLENy NAMDES» Oy Oy 405
@ IF NOT ODnD CICODE)Y THEN ERRORS

*

ENT.

Figure 2-1 (Cont.) Interpreting MACRO Examples

CALLING THE SYSTEM SERVICES

MACRO Notes

A routine name and entry mask show the beginning of
executable code in a routine or subroutine.

The input character string descriptor argument is defined
using the .ASCID directive.

For an output character string argument, define the two
longwords (length and address) for the descriptor, and
allocate enough bytes to hold the output data.

The MACRO directive .BLKW reserves a word to hold the output
length.

Call the service by a macro name that has the suffix _S or
G.

You can specify arguments by keyword (as in this example) or
in positional order. (Keyword names correspond to the names
of the arguments shown in lowercase in the system service
format descriptions in Part 1II.) If you omit any optional
arguments (that is, accept the defaults), you can omit them
completely if you specify arguments by keyword, but you must
code the comma for each missing argument if you specify
arguments by positional order.

Use the number sign (#) to indicate a literal value for an
argument.

The BLBC instruction causes a branch to a subroutine named
ERROR (not shown) if the low bit of the status code returned
from the service is clear (low bit clear = failure or
warning). You can use a BSBW instruction to branch
unconditionally to a routine that checks the return status.

PASCAL Notes

The system service routine must be declared in an external
function declaration in the function and procedure
declaration section. Note that all the parameters for the
system service call must be formally declared here.

Specify the input character string directly to the system
service call. The string descriptor 1is built by the
compiler.

The VAR declaration for the 1identifier NAMDES allocates a
packed array of 128 characters for the associated name which
is output from the system service. The packed array of
characters 1is wused as the string data type in PASCAL. The
formal parameter RSLBUF in the external function declaration
corresponds to the actual parameter NAMDES.

The VAR declaration for the identifier NAMLEN allocates a
word for the output length. The formal parameter RSLLEN in
the external function declaration corresponds to the actual
parameter NAMLEN,

Call the system service using the SYS$ form of the service
name. Enclose the arguments in parentheses and code them in
positional order. You cannot omit optional arguments. To
accept the default value for an argument, specify either the
default value if the argument is to be passed by immediate
value or a variable that has been assigned the default value
if the argument is to be passed by address (reference).

The IF statement makes a logical test following the function
reference to see if the service completed successfully, If
an error or warning occurred during the service call, the
procedure ERROR will be called.

CALLING THE SYSTEM SERVICES

MACRO Example

CYGLES! .ASCIDQ;CYGNUS/ FDESCRIFTOR FOR CYBNUS STRING
NAMDES! JLONG &3 FDESCRIFTOR FOR OUTFUT BUFFER
LONG NAMDES+8 @
+BLKE 63 $OUTPUT BUFFER (63 RYTES)
NAMLEN? BLKW 1@ SWORD TO RECEIVE LENGTH
+LENTRY ORION»0@ FROUTINE ENTRY FOINT & MASK
@ $TRNLDG..S LOGNAM=CYGDES » RSLLEN=NAMLEN » RSLEUF =NAMIES y -
DSBMSK=#4 SOON’T SEARCH FROCESS TABRLE
OELEC ROYERROR $CHECK FOR ERROR

.

+

+END
BASIC Equivalent

SUE ORION @

COM NAMDES$=63 @

EXTERNAL SYS$TRNLOG

DECLARE WORD NAMLEN: @
LONG SYS.5TATUS

*

Suberogram ORION

Nefine the fixed string outrut
Neclare the swustem service

Word to receive length &
Longword to receive status

r— e e s s

+

OSYS..8TATUS = SYS$TRNLOG(/CYGNUS’ » NAMLEN NAMIESSy v » 4% BY VALUE)

@)IF (SYS..STATUSZ AND 1%) = 0% &
THEN 444 I Ervror rath) &
ELSE 440 I Suecess rath
SUREND

Figure 2-1 (Cont.,) 1Interpreting MACRO Examples

CALLING THE SYSTEM SERVICES

MACRO Notes

©® 2 routine name and entry mask show the beginning of
executable code in a routine or subroutine,.

The input character string descriptor argument 1is defined
using the .ASCID directive.

©® For an output character string argument, define the two
longwords (length and address) for the descriptor, and
allocate enough bytes to hold the output data.

@® The MACRO directive .BLKW reserves a word to hold the output
length.

@ cCcall the service by a macro name that has the suffix _S or
G.

You can specify arguments by keyword (as in this example) or
in positional order. (Keyword names correspond to the names
of the arguments shown in lowercase in the system service
format descriptions in Part II.) If you omit any optional
arguments (that is, accept the defaults), you can omit them
completely 1if you specify arguments by keyword, but you must
code the comma for each missing argument if vyou specify
arguments by positional order.

Use the number sign (#) to indicate a literal wvalue for an
argument., .

(6) The BLBC instruction causes a branch to a subroutine named
ERROR (not shown) if the low bit of the status code returned
from the service 1is «clear (low bit clear = failure or
warning). You can use a BSBW instruction to branch
unconditionally to a routine that checks the return status,

BASIC Notes

The routine and its entry mask are defined by the SUB
statement.

Specify the input character string directly in the system
service call; the compiler builds the descriptor.

(3] The COM NAMDES$=63 declaration allocates 63 bytes for the

output data in a static area. The compiler builds the
descriptor.

(4] The DECLARE WORD NAMLEN declaration reserves a 16-bit word
for the output value.

(5) Invoke the system service as a function using the SYS$ form.

Enclose the arguments in parentheses, and code them in
positional order only. Code a comma for each optional
argument that you omit (including trailing arguments).

Use the modifier BY VALUE to indicate an immediate value
literal.

@ The IF statement makes a test on the 1low-order bit of the
return status. This form 1is recommended for all status
returns.

CHAPTER 3

EVENT FLAG SERVICES

Event flags are status posting bits maintained by VAX/VMS for general
programming use. Some system services set an event flag to indicate
the completion or the occurrence of an event: the calling program can
test the flag. For example, the Queue I/0O Request ($QIO) system
service sets an event flag when the requested input or output
operation completes,

Programs can use event flags to perform a variety of signaling
functions:

] Setting or clearing specific flags
. Testing the current status of flags

. Placing the current process in a wait state pending the
setting of a specific flag or a group of flags

Moreover, event flags can be used in common by more than one process,
as long as the cooperating processes are in the same group. Thus, if
you have developed an application that requires the concurrent
execution of several processes, you can use event flags to establish
communication among them and to synchronize their activity.

3.1 EVENT FLAG NUMBERS AND EVENT FLAG CLUSTERS

Each event flag has a unique decimal number; event flag arguments in
system service calls refer to these numbers. For example, if you
specify event flag 1 when you code a $QIO system service, then event
flag number 1 is set when the I/0 operation completes.

To allow manipulation of groups of event flags, the flags are ordered
in c¢lusters, with 32 flags in each cluster, numbered from right to
left, corresponding to bits 0 through 31 in a longword. The clusters
are also numbered. The range of event flag numbers encompasses the
flags in all clusters: event flag 0 is the first flag in cluster O,
event flag 32 is the first flag in cluster 1, and so on.

There are two types of clusters:

1. A local event flag cluster can only be used internally by a
single process. Local clusters are automatically available
to each process.,

2. A common event flag cluster can be shared by cooperating
processes in the same group. Before a process can refer to a
common event flag cluster, it must explicitly "associate”
with the cluster. Association is described in Section 3.4,
"Common Event Flag Clusters."

3-1

EVENT FLAG SERVICES

The ranges of event flag numbers and the clusters to which they belong
are summarized in Table 3-1.

Table 3-1
Summary of Event Flag and Cluster Numbers

Cluster |Event

Number |[Flag Numbers Description Restriction
0 0-31 Process-local event Event flags 24
1 32-63 flag clusters for through 31 are
general use reserved for

system use

2 64-95 Assignable common Must be associated
3 96-127 event flag cluster before use

3.1.1 Specifying Event Flag and Event Flag Cluster Numbers

The same system services manipulate flags in both 1local and common
event flag clusters. Since the event flag number implies the cluster
number, you do not have to specify the cluster number when you code a
system service call that refers to an event flag.

When a system service requires an event flag cluster number as an
argument, you need only specify the number of any event flag that is
in the cluster. Thus, to read the event flags in cluster 1, you could
specify any number in the range 32 through 63.

The VAX-11 Run-Time Library Reference Manual describes routines you
can use to allocate (LIBSGET_EF), deallocate (LIBSFREE_EF), and
reserve (LIBSRESERVE EF) an event flag from the process-wide pool of
available event flags.

3.2 EXAMPLES OF EVENT FLAG SERVICES

Local event flags are most commonly used in coordination with other
system services. For example, with the Set Timer ($SETIMR) system
service you can request that an event flag be set at a specific time
of day or after a specific interval of time has passed. If you want
to place a process in a wait state for a specified period of time, you
could code an event flag number for the $SETIMR service and then use
the Wait for Single Event Flag (SWAITFR) system service, as follows:

TIME? +BLKQ 1 SWILL. CONTAIN TIME INTERVAL TO WAILT

*

+*

$SETIMR..S EFN=#33,0AYTIM=TIME 38ET THE TIMER
SWAITFR..S EFN=#33 SWAIT UNTIL TIMER EXPIRES

In this example, the DAYTIM argument refers to a 64-bit time value.
Details on how to obtain a time value in the proper format for input
to this service are contained in Chapter 8, "Timer and Time Conversion
Services."

EVENT FLAG SERVICES

3.2.1 Event Flag Waits

Three system services place the process in a wait state pending the
setting of an event flag:

. The Wait for Single Event Flag (SWAITFR) system service
places the ©process in a wait state until a single flag has
been set,

® The Wait for Logical OR of Event Flags (SWFLOR) system
service places the process in a wait state until any one of a
specified group of event flags has been set,

° The Wait for Logical AND of Event Flags ($SWFLAND) system
service places the process 1in a wait state until all of a
specified group of flags have been set.

Another system service that accepts an event £flag number as an
argument is the Queue I/0 Request ($QIO) system service., Figure 3-1
shows a program that issues two $QIO system service calls, and uses
the SWFLAND system service to wait until both I/0O operations complete
before it continues execution.

@ $QI0.5 EFN=#lys... FISSUE FIRST QUEUE I/0 REQUEST
BRSEW ERROR FCHECK FOR ERROR
$QT0.8 EFN=#2y... FISHUE SECOND I/0 REQUEST
BSEW ERROR $CHECK FOR ERROR
@ SUFLAND.S EFN=#1yMASK=£#"K0110 3WALT UNTIL BOTH COMPLETE
RSEW ERROR FCHECK FOR ERROR
[$CONTINUE EXECUTION

+

Figure 3-1 Using Local Event Flags

Notes on Figure 3-1:

The event flag argument is specified in each $QI0 request.
Both of these event flags are in cluster 0.

@® After both I/0 requests are successfully queued, the program
calls the Wait for Logical AND of Event Flags (SWFLAND)
system service to wait wuntil the 1I/0 operations are
completed. In this service call, the EFN argument can
specify any event flag number in the cluster containing the
event flags to be waited for. The MASK argument specifies

which flags in the cluster are to be waited for: flags 1 and
2.

3.3 SETTING AND CLEARING EVENT FLAGS

The $SETIMR and $QIO0 system services clear the event flag specified in
the system service call before they queue the timer or I/0 request.
This ensures the integrity of the event flag with respect to the
process. If you are using event flags in local clusters for other

purposes, be sure the flag's initial value is what you want before you
use it.

3-3

EVENT FLAG SERVICES

The Set Event Flag ($SETEF) and Clear Event Flag (S$SCLREF) system
services set and clear specific event flags. For example, the
following system service call clears event flag 32:

$CLREF..S EFN=#32

The $SETEF and $CLREF services return successful status codes that
indicate whether the flag specified was set or clear when the service
was called. The caller can thus determine the previous state of the
flag, if necessary. The codes returned are SS$_WASSET and SS$_WASCLR.

Event flags in common event flag clusters are all initially clear when
the cluster 1is created. The next section describes the creation of
common event flag clusters,

3.4 COMMON EVENT FLAG CLUSTERS

Before any processes can use event flags in a common event flag
cluster, the cluster must be created. The Associate Common Event Flag
Cluster (SASCEFC) system service creates a common event flag cluster.
Once a cluster has been created, other processes in the same group can
call SASCEFC to establish their association with the cluster, so they
can access flags in it.

When a common event flag cluster is created, it must be identified by
a name string. (Section 3.7.1 explains the format of this string.)
All processes that associate with the cluster must use the same name
to refer to the cluster; the SASCEFC system service establishes the
correspondence between the cluster name and the cluster number that a
process assigns to it,

The following example shows how a process might create a common event
flag cluster named COMMON_CLUSTER and assign it a cluster number of 2:

CLUSTER?
+ASCID /COMMON..CLUSTER/ FCLUSTER NAME

L]

$ASCEFC.S EFN=#65yNAME=CLLUSTER $CREATE CLUSTER 2

Subsequently, other processes in the same group may assoclate with
this cluster. Those processes must use the same character string name
to refer to the cluster; however, the cluster numbers they assign do
not have to be the same.

Common event flag clusters are either temporary or permanent, The
PERM argument to the $ASCEFC system service defines whether the
cluster is temporary or permanent,

Temporary clusters:

° Require an element of the creating process's quota for timer
queue entries (TQELM gquota).

. Are deleted when all processes associated with the cluster
have disassociated. Disassociation can be performed
explicitly, with the Disassociate Common Event Flag Cluster
(SDACEFC) system service, or implicitly, when the image
exits.

EVENT FLAG SERVICES

Permanent clusters:

. Require the creating process to have the PRMCEB user
privilege.

. Continue to exist until they are explicitly marked for
deletion with the Delete Common Event Flag Cluster ($DLCEFC)
system service.

If cooperating processes that are going to use a common event flag
cluster all have the requisite privilege or quota to create a cluster,
the first process to call the $ASCEFC system service creates the
cluster.

3.5 DISASSOCIATING AND DELETING COMMON EVENT FLAG CLUSTERS

When a process no longer needs access to a common event flag cluster,
it 1issues the Disassociate Common Event Flag Cluster ($DACEFC) system
service. When all processes associated with a temporary cluster have
issued a $DACEFC system service, the system deletes the cluster. If a
process does not explicitly disassociate itself from a cluster, the
system performs an implicit disassociation when the image that called
SASCEFC exits.

Permanent clusters, however, must be explicitly marked for deletion
with the Delete Common Event Flag Cluster (S$DLCEFC) system service.
After the cluster has been marked for deletion, it 1is not deleted
until all processes associated with it have been disassociated.

3.6 EXAMPLE OF USING A COMMON EVENT FLAG CLUSTER

Figure 3-2 shows an example of four cooperating processes that share a
common event flag cluster. The processes named ORION, CYGNUS, LYRA,
and PEGASUS are in the same group.

[Process ORION]

CNAME? JASCID /COMMON_CLUSTER/

*

@ IASCEFC.S EFN=#64sNAME=CNAME

ESEW ERROR

+

© SWFLAND.S EFN=#64yMASK=#"XE

ESBW ERROR
@ $DACEFC.S EFN=#44

[Process CYGNUS]

ORION..FLAGS: ASCID /COMMON..CLUSTER/

*

EVENT FLAG SERVICES

FDESCRIFTOR FOR CLUSTER NAME

sCREATE COMMON CLUSTER
$CHECK FOR ERROR

FWALIT FOR FILAGS 1+2+3
FCHECK FOR ERROR
sDISASSOCIATE CLUSTER

s DESCRIFPTOR FOR
FCLUSTER NAME

O $ASCEFC.S EFN=#44,NAME=0RION..FLAGS

ESEW ERROR
$SETEF..5 EFN=%65
RSEBW ERROR
$DACEFC..S EFN=%64

[Process LYRA]

SHARE?! ASCID /COMMON..CLLUSTER/

*

FCHECK FOR ERROR
$GET EVENT FLAG 1
FCHECK FOR ERROR
$DISASSOCTIATE

FOESCRIPTOR FOR CLUSTER NAME

@ $ASCEFC..S EFN=#96yNAME=SHARE 3ASSOCIATE WITH CLUSTER 3

BSEW ERROR
$SETEF..S EFN=§99
RSEW ERROR
SOACEFC..S EFN=%94

[Process PEGASUS|

CLUSTER: ASCID /COMMON.CLUSTER/

+

$CHECK FOR ERROR
$SET FlaG 3
$CHECK FOR ERROR
SNISASSOCTATE

FDESCRIFPTOR FOR CLUSTER NAME

$ASCEFC.S EFN=%#464yNAME=CLUSTER 3$ASSOCIATE WITH CLUSTER

REEW ERROR
SWAITFR..S EFN=%615
RSEW ERROR

+

$SETEF .8 EFN=#66
RSEW ERROR
$IACEFC..S EFN=%64

sCHECK FOR ERROR
SWALT FOR FLAG 1
CHECK FOR ERROR
FCONTINUE

$GET FLAG 2
JCHECK FOR ERROR
FNISASSOCTIATE

Figure 3-2 Example of a Common Event Flag Cluster

EVENTVFLAG SERVICES

Notes on Figure 3-2:

@ Assume for this example that ORION is the first process to
issue the S$SASCEFC system service and therefore is the creator
of the cluster. Since this is a newly created cluster, all
event flags in it are 0.

@® The argument NAME in the SASCEFC system service call is a
pointer to the descriptor CNAME for the name to be assigned
to the cluster; in this example, the <cluster 1is named
COMMON_CLUSTER. This service call associates this name with
cluster 2, containing event flags 64 through 95. Cooperating
processes CYGNUS, LYRA, and PEGASUS must use the same
character string name to refer to this cluster.

® The continuation of process ORION depends on work done by
processes CYGNUS, LYRA, and PEGASUS. The Wait For Logical
AND of Event Flags (SWFLAND) system service call specifies a
mask indicating the event flags that must be set before
Process ORION can continue. The mask in this example, “XE is
the hexadecimal equivalent of binary 1110: it indicates that

the second, third, and fourth flags in the <cluster must be
set.

() Process CYGNUS executes, associates with the cluster, sets
event flag 65, and disassociates.

Process LYRA associates with the c¢luster, but instead of
referring to it as cluster 2, it refers to it as cluster 3
(with event flags in the range 96 through 127). Thus, when
process LYRA sets flag 99, it is setting the fourth bit in
COMMON_CLUSTER.,

@ Process PEGASUS associates with the cluster, waits for an
event flag set by process CYGNUS, and sets an event flag
itself.

© When all three event flags are set, Process ORION continues
execution and calls the SDACEFC system service. Since ORION
did not specify the PERM argument when it created the
cluster, COMMON_CLUSTER is deleted.

3.7 COMMON EVENT FLAG CLUSTERS IN SHARED MEMORY

A common event flag cluster in memory shared by multiple processors is
a vehicle by which processes executing on different CPUs can
communicate with each other. A process can create a common event flag
cluster using the Associate Common Event Flag Cluster (SASCEFC)
service, specifying a cluster name that locates the cluster in memory
shared by multiple processors (see Section 3.7.1). Other processes on
the same or a different processor can associate with that cluster by
specifying the same cluster name.

The SHMEM user privilege is required to create or delete a common
event flag cluster in memory shared by multiple processors, but not to
associate with an existing cluster.

EVENT FLAG SERVICES

3.7.1 Cluster Name

The NAME argument to the Associate Common Event Flag Cluster ($SASCEFC)
service identifies the <cluster that the process 1is creating or
associating with. The NAME argument specifies a descriptor pointing
to a character string that determines whether the cluster is in memory
shared by multiple processors. The format of this string 1is as
follows:

[shared-memory-name:]cluster-name

shared-memory-name
Identifies the memory shared by multiple processors in which the
cluster exists or is to be created. (This name was assigned when
the memory unit was connected at system generation time.) If this
field is not included, the cluster exists or is created in memory

that is local to the processor on which the calling process |is
executing.

cluster-name
Is the name of the cluster. You may choose any valid name, from
1 to 15 characters; however, all processes associating with the
same commonh event flag cluster must specify the same name.

If you wish, you can include both the shared-memory-name and the
cluster-name for an event flag cluster in memory shared by multiple
processors. However, if you want to use existing programs without
recompiling or relinking, you can specify just a cluster-name and have
the system translate it to a complete specification. The system
attempts to perform logical name translation of the string specified
by the NAME argument in the following manner:

1. CEF$ is prefixed to the string (to the part before the colon
if both parts are present), and the result is subjected to
logical name translation.

2. The part of the name after the colon (if any) is appended to
the translated name.

3. If the result contains a logical name, steps 1 and 2 are
repeated (up to 9 more times, if necessary) until translation
does not succeed.

For example, assume that you have made the following 1logical name
assignment:

$ DEFINE CEF$CLUS.RT SHRMEM$1:!CLUS_RT
Assume also that your program contains the following statements:

NAMEDESC: «A8CID /CLUS.RT/ FOESCRIPTOR FOR LOGICAL NAME OF CLUSTER

$QSCEECWS + 0+t NAOME=NAMEDESCy o« 4 »
The following logical name translation takes place.
1. CEF$ is prefixed to CLUS_RT.
2. CEF$CLUS_RT is translated to SHRMEM$1:CLUS_RT. (No further

translation 1is successful. When logical name translation
fails, the string is passed to the service.)

EVENT FLAG SERVICES

There is one exception to the translation method described in this
section. If the name string starts with an underscore (_), the
VAX/VMS system strips the underscore and considers the resultant

string to be the actual name (that is, no further translation is
performed).

CHAPTER 4

AST (ASYNCHRONOUS SYSTEM TRAP) SERVICES

Some system services allow a process to request that it be interrupted
when a particular event occurs. Since the interrupt occurs
asynchronously (out of sequence) with respect to the process's
execution, the interrupt mechanism is called an asynchronous system
trap (AST). The trap provides a transfer of control to a
user-specified routine that handles the event.

The system services that use the AST mechanism accept as an argument
the address of an AST service routine, that is, a routine to be given
control when the event occurs.
These services are:

e Queue I/0 Request ($QIO)

e Set Timer (SSETIMR)

® Set Power Recovery AST (SSETPRA)

e Update Section File on Disk ($UPDSEC)

e Get Job/Process Information ($GETJPI)

e Declare AST ($SDCLAST)
For example, if you code a Set Timer ($SETIMR) system service, you can
specify the address of a routine to be executed when a time interval
expires or at a particular time of day. The service sets the timer
and returns; the program image continues executing. When the
requested timer event occurs, the system "delivers" an AST by

interrupting the process and calling the specified routine.

Figure 4-1 shows a typical program that «calls the $SETIMR system
service with a request for an AST when a timer event occurs.

AST (ASYNCHRONOUS SYSTEM TRAP) SERVICES

NOON ¢ +BLKQ 1 FWILL CONTAIN 12:00 SYSTEM TIME
+ENTRY LIERA»O FENTRY MASK FOR LIBRA

.

*

@ $SETIMR.S DAYTIM=NOONyASTADR=TIMEAST $SET TIMER

BSEW ERROR $CHECK FOR ERROR
. Timer
. Interrust e
TIMEAST?
+WORD 0 FENTRY MASK FOR AST ROUTINE
e, . FHANDLE TIMER REQUEST
RET F DONE

+END LIBRA

Figure 4-1 Example of an AST

Notes on Figure 4-1:

© The call to the $SETIMR system service requests an AST at
12:00 noon.

The DAYTIM argument refers to the quadword NOON, which must
contain the time in system time (64-bit) format. For details
on how this 1is done, see Chapter 8, "Timer and Time
Conversion Services." The ASTADR argument refers to TIMEAST,
the address of the AST service routine.

When the call to the system service completes, the process
continues execution.

® The timer expires at 12:00 and notifies the system. The
system interrupts execution of the process and gives control
to the AST service routine. .

© The user routine TIMEAST handles the interrupt. When the AST
routine completes, it 1issues a RET instruction to return
control to the program. The program resumes execution at the
point at which it was interrupted.

The following sections describe in more detail how ASTs work and how
to use them.

4.1 ACCESS MODES FOR AST EXECUTION

Each request for an AST is qualified by the access mode from which the
AST 1is requested. Thus, if an image executing in user mode requests
notification of an event by means of an AST, the AST service routine
executes in user mode.

Since the ASTs you use will almost always execute in user mode, you do
not need to be concerned with access modes. However, you should be
aware of some system considerations for AST delivery. These
considerations are described in Section 4.5, "AST Delivery."

N

AST (ASYNCHRONOUS SYSTEM TRAP) SERVICES

4.2 ASTS AND PROCESS WAIT STATES

A process that is in a wait state can be interrupted for the delivery
of an AST and the execution of an AST service routine. When the AST
service routine completes execution, the process is returned to the
wait state, if the condition that caused the wait is still in effect.

The following wait states may be interrupted:
. Event flag waits
° Hibernation

. Resource waits and page faults

4.2.1 Event Flag Waits

If a process is waiting for an event flag and 1is interrupted by an
AST, the wait state is restored following execution of the AST service
routine. If the flag is set during the execution of the AST service
routine (for example, by completion of an I/0 operation), then the
process continues execution when the AST service routine completes.

Event flags are described in detail 1in Chapter 3, "Event Flag
Services."

4.2.2 Hibernation

A process can place itself in a wait state with the Hibernate ($SHIBER)
system service. This wait state can be interrupted for the delivery
of an AST. When the AST service routine completes execution, the
process continues hibernation. The process can, however, "wake"
itself in the AST service routine or be awakened by another process or
as the result of a timer-scheduled wakeup request. Then, it continues
execution when the AST service routine completes.

Process suspension is another form of wait; however, a suspended
process cannot be interrupted by an AST. Process hibernation and
suspension are described in Chapter 7, "Process Control Services.,"

4.2.3 Resource Waits And Page Faults

When a process is executing an image, the system can place the process
in a wait state until a required resource becomes available, or until
a page in its virtual address space 1is paged into memory. These
waits, which are generally transparent to the process, can also be
interrupted for the delivery of an AST.

4.3 HOW ASTS ARE DECLARED

Most ASTs occur as the result of the completion of an asynchtoﬁous
event initiated by a system service, for example, a $QIO0O or $SETIMR
request, when the process requests notification by means of an AST.

There is also a system service that creates ASTs, the Declare AST

(SDCLAST) system service. With this service, a process can declare an
AST only for the same or for a less privileged access mode.

4-3

AST (ASYNCHRONOUS SYSTEM TRAP) SERVICES

You may find occasional use for the $DCLAST system service in your
programming applications; you may also find the $DCLAST service
useful when you want to test an AST service routine.

4.4 THE AST SERVICE ROUTINE

An AST service routine must be a separate routine. The system calls
the AST with a CALLG instruction; the routine must return using a RET
instruction. If the service routine modifies any registers other than
RO or R1l, it must set the appropriate bits in the entry mask so that
the contents of those registers are saved.

Since it is impossible to know when the AST service routine will begin
executing, you must take care when you code the AST service routine
that it does not modify any data or instructions wused by the main
procedure.

On entry to the AST service routine, the Argument Pointer register
(AP) points to an argument list that has the format:

31 8 7 0

AST parameter

RO

R1

PC

PSL

The registers RO and Rl, the PC, and PSL in this list are those that
were saved when the process was interrupted by delivery of the AST.

The AST parameter is an argument passed to the AST service routine so
that it can identify the event that caused the AST. When you code a
call to a system service requesting an AST, or when you code a $DCLAST
system service, you can supply a value for the AST parameter. If you
do not specify a value, it defaults to 0.

Figure 4-2 illustrates an AST service routine. 1In this example, the
ASTs are created by the $DCLAST system service: the ASTs are
delivered to the process immediately, so that the service routine is
called following each $DCLAST system service call.

AST (ASYNCHRONOUS SYSTEM TRAP) SERVICES

+ENTRY FEGASUS»O SENTRY MASK
@ ¢DCLAST.S ASTADR=ASTRTNy ASTPRM=%1 §A8T WITH FARM=1
$NCLAST..S ASTADR=ASTRTN ABTFRM=%2 §AST WITH FARM=2

RET FRETURN CONTROL
ASTRTNG JWORD O FENTRY MASK
@ CMPIL. ¥1,4(AF) SCHECK AST PARAMETER 1
REQL 104 3IF 1 GOTO 10%
CMPL #2y4(AF) FCHECK FOR FPARM=2
REQL 204 5IF 2 GOTO 20%

¢

1042 + FHANDLE FIRST AST
RET $RETURN
20%3 s HANDLE SECOND AST

RET §RETURN

JEND PEGASUS
Figure 4-2 An AST Service Routine

Notes on Figure 4-2:

" The program PEGASUS calls the Declare AST system service
twice to queue ASTs. Both ASTs specify the AST service
routine, ASTRTN. However, a different parameter is passed
for each call.

@ The first action that this AST routine takes is to check the
AST parameter, so that it can determine if the AST being
delivered is the first or second one declared. The value of
the AST parameter determines the flow of execution.

4.5 AST DELIVERY

When an AST occurs, the system may not be able to deliver the AST to

the process immediately. An AST cannot be delivered if any of the
following conditions exist:

® An AST service routine is currently executing at the same or
at a more privileged access mode.

Because ASTs are implicitly disabled when an AST service
routine executes, one AST routine cannot be interrupted by
another AST routine declared for the same access mode. It
can, however, be interrupted for an AST declared for a more
privileged access mode.,

e AST delivery is explicitly disabled for the access mode.

A process can disable the delivery of AST interrupts with the
Set AST Enable (SSETAST) system service. This service may be
useful when a program is executing a sequence of instructions
that should not be interrupted for the execution of an AST
routine,

AST (ASYNCHRONOUS SYSTEM TRAP) SERVICES

® The process is executing at an access mode more privileged
than that for which the AST is declared.

For example, if a user mode AST is declared as the result of a
system service but the program is currently executing at a
higher access mode (because of another system service call,
for example), the AST is not delivered until the program is
once again executing in user mode.

If an AST cannot be delivered when the interrupt occurs, the AST is
queued until the condition(s) disabling delivery are removed. Queued
ASTs are ordered by the access mode from which they were declared,
with those declared from more privileged access modes at the front of
the queue. If more than one AST is queued for an access mode, the
ASTs are delivered in the order in which they are queued.

CHAPTER 5

LOGICAL NAME SERVICES

The VAX/VMS logical name services provide a technique for manipulating
and substituting character string names. Logical names are commonly
used to specify devices or files for input or output operations. You
can code programs with logical, or symbolic, names to refer to
physical devices or files, and then establish an -equivalence, or
actual, name by 1issuing the ASSIGN command from the command stream
before program execution. When the program executes, a reference to
the logical name results in the use of the equivalence name,.

This chapter describes how to use system services to establish logical
names for general application purposes. The system performs special
logical name translation procedures for names associated with 1I/0
services and with services that can deal with facilities located in

shared (multiport) memory; for further information see the following
sections:

e Device names for I/0 services: Section 6.10 in this manual
and the discussion of 1logical names in the VAX/VMS Command
Language User's Guide,

e Common event flag cluster names: Section 3.7.1
e Mailbox names: Section 6.,13.1

e Global section names: Section 10.6.5.1

5.1 LOGICAL NAMES AND EQUIVALENCE NAMES

Logical name and equivalence name strings can have a maximum of 63
characters. You can establish logical name and equivalence name
pairs:

e At the command level, with the ALLOCATE, ASSIGN, DEFINE, or
MOUNT commands

e In a program, with the Create Logical Name ($SCRELOG) and
Create Mailbox and Assign Channel (SCREMBX) system services

For example, you could use the symbolic name TERMINAL to refer to an
output terminal in a program. For a particular run of the program,
you could use the ASSIGN command to establish the equivalence name
TTA2:.

LOGICAL NAME SERVICES

To perform an assignment in a program, you must provide character
string descriptors for the name strings and use the $CRELOG system
service as shown in the following example. 1In either case, the result
is the same: the logical name TERMINAL is equated to the physical
device name TTA2:.

TERMNAME: ASCID /TERMINAL/ $DESCRIFTOR FOR LOGICAL NAME
TTNAME?! +ASCID /TTA2Y/ SDESCRIFPTOR FOR EQUIVALENCE NAME

+

$CREL.0G..S TRLFLG=%#2yL.OGNAM=TERMNAME v EQLNAM=T TNAME

The TBLFLG argument in this example indicates the logical name table
number (in this case, the process logical name table). Logical name
tables and logical name table numbers are discussed in the following
sections.

5.2 LOGICAL NAME TABLES

Logical name and equivalence name pairs are maintained in three
logical name tables:

° Process
° Group
° System

A process logical name table contains names used exclusively by the
process. A process logical name table exists for each process in the
system. BSome entries in the process logical name table are made by
system programs executing at more privileged access modes; these
entries are qualified by the access mode from which the entry was
made. For example, 1logical names created at the command level are
supervisor mode entries.

The group logical name table contains names that cooperating processes
in the same group can use. The GRPNAM privilege is required to place
a name in the group logical name table,

The system logical name table contains names that all processes in the
system can access. This table includes the default names for all
system-assigned logical names. The SYSNAM privilege 1is required to
place a name in the system logical name table.

Figure 5-1 illustrates some sample logical name table entries.

LOGICAL NAME SERVICES

Logical Name Table for Process A (Group Number = 200;]"

Logical Name Equivalence Name Access Mode
TERMINAL ———» TTA2: User

INFILE ~—— DM1: [HIGGINS]TEST.DAT Supervisor
OUTFILE o3 DM1:[HIGGINS]TEST.OUT Supervisor

LGroup Logical Name Tablé](?

Logical Name Equivalence Name Group Number
© TERMINAL ——» TTAl: 100
O MAILBOX ——» MB3: 200

DISPLAY —————» TERMINAL 200
© TERMINAL ——» TTA3: 300

lSystem Logical Name Table]@)

Logical Name Equivalence Name
SYSSLIBRARY ————3 DBAO:[SYSLIBI]

SYSSSYSTEM ——® DBAO: [SYSTEM]

Figure 5-1 Logical Name Table Entries

Notes on Figure 5-1:

@ This process logical name table equates the logical

TERMINAL to the specific terminal TTA2:. INFILE and OUTFILE
are equated to disk file specifications: these logical names

were created from supervisor mode.

® The group logical name table shows entries qualified by group
numbers; only processes that have the indicated group number

can access these entries.

® 1In Group 100, the logical name TERMINAL 1is equated to

terminal TTAl:. Individual processes in Group 100 that want

to refer to the 1logical name TERMINAL do not have
individually assign it an equivalence name.

LOGICAL NAME SERVICES

® Group 200 has entries for logical names MAILBOX and DISPLAY.
Other processes in group 200 can use these logical names for
input or output operations.

® 1In Group 300, the logical name TERMINAL is equated to the
physical device name TTA3:. Note that there are two entries
for TERMINAL in the group logical name table. These are
discrete entries, since they are qualified by the number of
the group to which they belong.

@ The system logical name table contains the default physical
device names for all processes in the system. SYSSLIBRARY
and SYS$SSYSTEM provide logical names for all users to refer
to the device(s) containing system files,

5.2.1 Logical Name Table Numbers

Each logical name table has a number associated with it. To place an
entry in a 1logical name table, specify a logical name table number
with the TBLFLG argument to the $CRELOG system service. The logical
name table numbers are as follows: .

Table Number

Process 2
Group 1
System 0

The TBLFLG argument defaults to a value of 0, that 1is, the system
logical name table.

5.2.2 Duplication of Logical Names

The process logical name table can contain entries for the same
logical name at different access modes. The group logical name table
can contain entries for the same logical name, as long as the group
numbers are different.

In all other cases, there can be only one entry for a particular
logical name 1in a logical name table. For example, if the logical
name TERMINAL is equated to TTA2: in the process table as shown in
the figure, and the ©process subsequently equates the logical name
TERMINAL to TTA3:, the equivalence of TERMINAL to TTA2: is replaced
by the new equivalence name. The successful return status code
SS$_SUPERSEDE indicates that a new entry replaced an old one.

Any number of logical names can have the same equivalence name.

5.3 LOGICAL NAME TRANSLATION

When you refer to a logical name for a physical device in an I/0
service, the service performs logical name translation automatically.
In many cases, a program must perform the logical name translation to
obtain the equivalence name for a logical name. The Translate Logical
Name ($STRNLOG) system service searches the logical name tables for a
specified logical name and returns the equivalence name.

LOGICAL NAME SERVICES

By default, the process, group, and system tables are all searched, in
that order, and the first match found is returned. Thus, if identical
logical names exist in the process and group tables, the process table
entry is found first, and the group table is not searched. When the
process logical name table is searched, the entries are searched in
order of access mode, with user mode entries matched first, supervisor
second, and so on.

The following example shows a call to the $TRNLOG system service to
translate the logical name TERMINAL.

TLOGRESC?: +ASCIN /TERMINAL/ FLESCRIPTOR FOR INPUT L.OGNAM
TEQLINESC? FRUFFER DESCRIPTOR FOR EQLNAME
+LONG 64 FLENGTH
+LONG TEQLDESCHS FADDRESS OF BUFFER
+BLKE 64 FRUFFER OF 64 RYTES
TLEN? +BLKW 1 SRECEIVE EQLNAM LENGTH HERE

*

+

$TRNL.OG..S LOGNAM=TLOGLOESCy RELLEN=TLENy RELBUF=TEQLDESC

If the logical name table entries are as shown in Figure 5-1, this
call to the STRNLOG system service results in the translation of the
logical name TERMINAL. The equivalence name string TTA2: is placed
in the output buffer described by TEQLDESC. The 1length of the
equivalence name string is written into the word at TLEN.

Note that the call to STRNLOG might be coded as follows:
$TRNLOG..S LOGNAM=TLOGLOESC y RELLEN=TEQLIESC y RELBUF=TEQLDESC

In this case the output equivalence name string length is written into
the first word of the character string descriptor. This descriptor
can then be used as input to another system service.

5.3.1 Bypassing Logical Name Tables

To disable the search of a particular logical name table, you can code
the optional argument DSBMSK to the STRNLOG system service., This
argument is a mask that disables the search of one or more 1logical
name tables. The format of the mask is described in the discussion of
the S$TRNLOG system service in Part II.

5.3.2 Logical Name and Equivalence Name Format Conventions

The operating system uses special conventions for logical
name/equivalence name assignments and translation, These conventions
are generally transparent to user programs; however, you should be
aware of the programming considerations involved.

If a logical name string is preceded with an underscore character ()
STRNLOG will not translate the logical name. Instead, it returns the
status code SS$ NOTRAN, strips the underscore from the logical name
string, then “writes the string into the result buffer. This
convention permits bypassing logical name translation in I/O services
when physical device name strings are specified.

LOGICAL NAME SERVICES

At login, the system creates default logical name table entries for
process permanent files. The equivalence names for these entries (for
example, SYSSINPUT and SYSSOUTPUT,) are preceded with a 4-byte header
that contains the following:

Byte(s) Contents

0 “X1B (Escape character)
1 “X00
2-3 RMS Internal File Identifier (IFI)

This header is followed by the equivalence name string. If any of
your program applications must translate system-assigned 1logical
names, the program must be prepared to check for the existence of this
header and then to use only the desired part of the equivalence
string.

For an example of how to do this, see Fiqure 6-2 1in Section 6.7,
"Complete Terminal I/0 Example."

5.4 RECURSIVE TRANSLATION

When a translate request is made for a logical name string, the
STRNLOG system service searches the logical name tables only once. If
you structure one or more logical name tables such that 1logical name
equivalencies are several 1levels deep (that 1is, such that an
equivalence name is entered in the table as a 1logical name with
another equivalence name, and so on), you may require recursive
logical name translation. Note that Figure 5-1 earlier in this
chapter illustrates recursive entries: the logical name DISPLAY is
equated to the string TERMINAL in the group table, and the name
TERMINAL 1is equated to the device name string TTA2: in the process
table. The $TRNLOG system service must be used twice to complete the
translation of the logical name DISPLAY.

You can code a program loop so that the output string from the $TRNLOG
‘service 1is reused as the input string, and check for the status code
SS$ NOTRAN following the call to the service. SS$ NOTRAN indicates
that no logical name was found, and that the input string has been
written into the output buffer,

5.5 DELETING LOGICAL NAMES

The Delete Logical Name ($DELLOG) system service deletes entries from
a logical name table. When you code a call to the SDELLOG system
service, you can specify a single logical name to delete, or you can
specify that you want to delete all logical names from a particular
table. For example, the following call deletes all names from the
process logical name table that were entered in the table from user
mode:

$DELLOG_S TBLFLG=#2

Logical names that were placed in the process logical name table from
an image running in user mode are automatically deleted at image exit.
Entries made from the command stream are placed in the table by the
command interpreter; these are supervisor mode entries and are not
deleted at image exit.

CHAPTER 6

INPUT/OUTPUT SERVICES

There are two basic methods you <can use to perform input/output
operations under VAX/VMS:

e VAX-11] Record Management Services (RMS)

e I/0 system services
VAX-11 RMS provides a set of routines for general purpose,
device-independent functions such as data storage, retrieval, and
modification.
The I/0 system services permit you to use the I/0 resources of the
operating system directly in a device-dependent manner. I/0 services
also provide some specialized functions not available in RMS. Using
I/0 services requires more knowledge on your part, but can result in
more efficient input/output operations.

This chapter provides general information on how to use the 1I/0
services, including:

e Assigning channels

e Queuing I/0 requests

e Allocating devices

e Using mailboxes
Examples are provided to show you how to use the 1I/0 services for
simple functions, for example, terminal input and output operations.

If you plan to write device-dependent I/0 routines, see the VAX/VMS
I/0 User's Guide.

Other methods of performing I/O with VAX/VMS include the following,
which are documented in other manuals:

e Writing your own device driver, See the VAX/VMS Guide to
Writing a Device Driver

® Connecting to a device interrupt vector. See the VAX/VMS
) Real-Time User's Guide

6.1 ASSIGNING CHANNELS

Before any input or output operation can be done to a physical device,
a channel must be assigned to the device to provide a path between the
process and the device. The Assign 1I/0 Channel ($SASSIGN) system
service establishes this path.

INPUT/OUTPUT SERVICES

When you code a call to the $ASSIGN service, you must supply the name
of the device, which may be a physical device name or a logical name,
and the address of a word to receive the channel number., The service
returns a channel number, and you use this channel number when you
code an input or an output request.

For example, the following lines assign an I/O channel to the device
TTA2. The channel number is returned in the word at TTCHAN.

TTNAME?! ASCID /TTA2Y/ FTERMINAL DESCRIFTOR
TTCHAN? JELKW 1 F TERMINAL CHANNEL NUMBER

.

*

$ASSIGN..8 DEVNAM=TTNAME s CHAN=TTCHAN

To assign a channel to the current default input or output device, you
must first translate the logical name SYSSINPUT or SYSSOUTPUT with the
Translate Logical Name (STRNLOG) system service. Then, specify the
equivalence name returned as the DEVNAM argument to the $ASSIGN system
service., This technique requires you to interpret header information
preceding the equivalence name string for these devices. For an
example of this technique, see Figure 6-2 later in this chapter.

For more details on how $ASSIGN and other I/O services handle logical
names, see Section 6.10, "Logical Names and Physical Device Names."

6.2 QUEUING I/O REQUESTS

All input and output operations in VAX/VMS are 1initiated with the
Queue I/0 Request ($QI0) system service. $0I0 queues the request and
returns; while the operating system processes the request, the
program that issued the request can continue execution.

Required arguments to the $QI0 service 1include the <channel number
assigned to the device on which the I/0 is to be done, and a function
code (expressed symbolically) that indicates the specific operation to
be performed. Depending on the function code, one through six
additional parameters may be required.

For example, the I0$ WRITEVBLK and I0$ READVBLK function codes are
device-independent TCodes used to read and write single records or
virtual blocks. These function codes are suitable for simple terminal
I/0. They require parameters indicating the address of an input or
output buffer and the buffer length. A call to $QIO to write a 1line
to a terminal might appear as:

$QI0.8 CHAN=TTCHAN» FUNC=#T0%$. WRITEVRLKy -~
Fl=RUFADDR y F2=RUFLEN

Function codes are defined for all supported device types, and most of
the codes are device dependent, that is, they perform functions that
are specific to a particular device. The $IODEF macro defines
symbolic names for these function codes, which are summarized in
Appendix A, "System Symbolic Definition Macros." For details on all
function codes and an explanation of the parameters required by each,
see the VAX/VMS I/0 User's Guide.

INPUT/OUTPUT SERVICES

6.3 SYNCHRONIZING 1I/0 COMPLETION

The $QI0 system service returns control to the calling program as soon
as the 1I/0 request 1is queued; the status code returned in RO
indicates whether or not the request was queued successfully. To
ensure proper synchronization of the I/O operation with respect to the
program, the program must:

1. Test for the completion of the Queue I/0O operation

2. Test whether the I/0 operation itself completed successfully
Optional arguments to the $QI0O service provide techniques for
synchronizing 1I/0 completion. There are three methods you can use to

test for the completion of an I/0 request:

e Specify the number of an event flag to be set when the 1I/0
completes

® Specify the address of an AST routine to be executed when the
I/0 completes

e Specify the address of an I/0 status block in which the system
can place the return status when the I/O completes

Examples of using these three techniques are shown in Figure 6-1.

Example 1: Event FlagsJi)

@ $Q10.8 EFN=%ly.., $IHEUE 18T 1/0 REQUEST
REEW ERROR FAUEVED SUCCESSFULLY?
$QRI0.8 EFN=%2s... FISSUE 2ND 1/0 REQUEST
BGEBW ERROR FAUELED SUCCESSFULLYT

© SWFLAND.S EFN=#0y MASK=#"E110 SWALT TILL BOTH DONE

Notes on Example 1:

@ When you code an event flag number as an argument, $QIO
clears the event flag when it queues the I/0 request. When
the I/0 completes, the flag is set.

In this example, the program issues two Queue I/0 requests.
A different event flag is specified for each request.

The Wait for Logical AND of Event Flags (SWFLAND) system
service places the process 1in a wait state until both I/O
operations are complete. The EFN argument indicates that the
event flags are both in <cluster 0; the MASK argument
indicates the flags that are to be waited for.

Figure 6~1 Synchronizing I/0O Completion

INPUT/OUTPUT SERVICES

Example 2: An AST Routine| @

@ $QI0-S +.+rASTADR=TTASTyASTFRM=%1y... $I/0 WITH AST

TTAST?

BSEW ERROR FQUEUED SUCCESSFULLY?
. FCONTINUE

+WORD © (3) $AST SERVICE ROUTINE ENTRY MASK
. FHANDLE I/0 COMFLETION

RET FEND OF SERVICE ROUTINE

Notes on Example 2:

When you code the ASTADR argument to the $QI0 system service,
the system interrupts the process when the I/0 completes and
passes control to the specified AST service routine.

The $QI0 system service call specifies the address of the AST
routine, TTAST, and a parameter to pass as an argument to the
AST service routine. When $QIO returns control, the process
continues execution.

When the I/0 completes, the AST routine TTAST is called, and
it responds to the I/0 completion.

When this routine is finished executing, control returns to
the process at the point at which it was interrupted.

Figure 6-1 (Cont.) Synchronizing I/0 Completion

INPUT/OUTPUT SERVICES

Example 3: The I/0 Status Block | @

TTIOSK: BLKR 1 @ $170 STATUS BLOCK
© $010.8 o s TOSE=TTIOSEY o 4o $I8SUE I/0 REQUEST
REBRW ERROR FQUEVED SUCCESSFULLYT
. $ CONTINUE
1043 TS%W TTI088 @ 18 I/0 DONE YET?
REQL. 10% $NOy LOOF TIL DONE
CMFW TTIOSE, #5846, .NORMAL 5170 SUCCESSFULT
BNEQ T0..ERR N0y ERROR
. SYESy HANDLE IT

*
+

Notes on Example 3:

@ An 1/0 status block is a quadword structure that the system
uses to post the status of an I/0 operation. The quadword
area must be defined in your program.

e; TTIOSB defines the I/0 status block for this 1I/0 operation.
The 1IO0SB argument in the $QIO0 system service refers to this
quadword.

©® 35010 clears the quadword when it queues the 1I/0 request.
When the request is successfully queued, the program
continues execution.

@® The process polls the I/0 status block. If the 1low-order
word still contains 0, the 1I/0O operation has not yet
completed. In this example, the program 1loops until the
request is complete.

Figure 6-1 (Cont.,) Synchronizing I/O Completion

6.4 I/0 COMPLETION STATUS

When an I/0 operation completes, the system posts the completion
status in the I/O status block, if one is specified. The completion
status indicates whether the operation actually completed
successfully, the number of bytes that were transferred, and
additional device-~dependent return information.

The format of the information written in the IOSB is:

31 16 15 0

count status

device-dependent information

The first word contains a system status code indicating the success or
failure of the operation. The status codes used are the same as for
all returns from system services; for example, SS$_NORMAL indicates
successful completion.

INPUT/OUTPUT SERVICES

The second word contains the number of bytes actually transferred in
the I/0 operation.

The second longword contains device-dependent return information.

To ensure successful 1I/0 completion and the integrity of data
transfers, the 1I0SB should be checked following I/0 requests,
particularly for device-dependent I/0 functions. For complete details
on how to use the I/0 status block, see the VAX/VMS I/0 User's Guide.

6.5 SIMPLIFIED FORMS OF THE $QIO MACRO ($QIOW, $INPUT, $OUTPUT)

The $QIOW macro combines the functions of the $QI0O and the Wait for
Single Event Flag (SWAITFR) system services. SQIOW has the same
arguments as the $QI0 macro. It queues the 1I/0 request, and then
places the program in a wait state until the I/0 is complete.

The $INPUT and $OUTPUT macros are a subset of the $QIOW macro: they
use only the function codes to read and write virtual blocks or
records (I0$ READVBLK and I0O$ WRITEVBLK, respectively). These macros
provide an —efficient and easy way to specify I/0 for terminals,
mailboxes, line printers, and interprocess network transfers.

When you code a $INPUT or $OUTPUT macro, you must specify the channel
on which the I/0 is to be performed and the length and address of the
input or output buffer. Optionally, you can specify an event flag to
be set when the I/0 1is complete and the address of an I/0 status
block. For example:

$INFUT CHAN=TTCHANy LENGTH=INLEN» BUFFER=TINRUF y EFN=&1y TOSE=TTIOSR
or

$OUTFUT CHAN=TTCHAN s LENGTH=0UTLEN BUFFER=0UTRUF y EFN=%2y TOSR=TTIOSR

6.6 DEASSIGNING I/O CHANNELS

When a process no longer needs access to an I/0 device, it should
release the channel assigned to the device by issuing the Deassign I/O
Channel (SDASSGN) system service. For example:

$DASSGN..S CHAN=TTCHAN
This service call releases the terminal channel assignment acquired in

the $ASSIGN example shown earlier. The system automatically deassigns
channels for a process when the image that assigned the channel exits.

INPUT/OUTPUT SERVICES

6.7 COMPLETE TERMINAL I/O EXAMPLE

Figure 6-2 shows a complete sequence of input and output operations
using the $INPUT and $OUTPUT macros to read and write lines to the
current default SYS$SINPUT device. Note that if the program containing
these 1lines 1is executed interactively, the input/output is to the
current terminal.

TTNAME! JASCID /

TTCHAN? JBLKW

TTIOSE! BLKW
TTIOLENS

+BLKW
+ BLKI.

OQUTLEN? +BLKI.

INRUF$

+RBLKR

DEVIESC:

NLEN?
NADR S
NAME $

1042

+LONG
+L.LONG
+ BLKE

+

3

O $TRNLOG..
CMPR

BNEQ
GURL.
AN

O $ASSIGN..
RERW

0O s InNFUT
BERW

@ CMPW
ENEQ

O HOVZWL.

© souTruT
REEW
CMPW
RBNEQ

@ snasson..
BERW

INPUT/OUTPUT SERVICES

SYSSINFUT/ @ FDESCRIFTOR FOR TERMINAL NAME
1 FRECETVE CHANNEL NUMRBER HERE
10 FEIRST WORD OF I0SRy STATUS

1 SGECOND WORDy GET LLENGTH
1 $SECOND LONGWORD OF TOSRK

1 PLENGTH OF STRING TO OUTFUT
80 © FRUFFER TO READ INFUT

FOESCRIFPTOR FOR
&3 FLENGTH OF ERU
NAME SADDRESS OF RUFFER
43 FALLOCATE 63-RYTE RBUFFER TO HOLD
FEQUIVALENCE NAME OF *"SYS$INFUT®

OGICAL NAME TRANSLATION

§ LOGNAM=TTNAME y RELLEN=NLEN» RELBUF=QEVDESC

NAME » 7 X181 SDOES NAME RBEGIN WITH ESCAPET (IF S0y
3 IT’8 A PROCESS PERMANENT FILE.)

104 $NOy SKIF

F#4 9 NLEN FOTHERWISE Yy SUBTRACT 4 FROM LENGTH

F4y NADIDR $AND 4 TO ADDRESS

S DEVNAM=NEVDESCy CHAN=TTCHAN $ASSTGN CHANNEIL
ERROR

INRUF» LOGR=TTIOSEH

CHAN=TTCHAN LLENGTH=#80 y BUF FER:=
ERROR

TTIOSR » #5854 . NORMAL. 170 SUC
TOLERR SERROR
TTTOLENyOUTLEN FEET LENGTH OUT OF TOSE

CHAN=TTCHAN y LENGTH=0UTLENy BUFFER= ENBUF ¢ TOSE=TTLOGR
ERROR

TTIOSBE #58%. NORMAL. $BUCCESSFULY

TO..ERR FRRANCH IF NOT

§ CHAN=TTCHAN FDONEy DEASSIGN CHANNEL
ERROR

Figure 6-2 Example of Terminal Input and Output

INPUT/OUTPUT SERVICES

Notes on Figure 6-2:

(2

TTNAME is a character string descriptor for the 1logical
device SYSSINPUT and TTCHAN is a word to receive the channel
number assigned to it. :

The IO0OSB for the I/0 operations is structured so that the
program can easily check for the completion status (in the
first word) and the length of the input string returned (in
the second word).

The string will be read into the buffer INBUF; the longword
OUTLEN will contain the length of the string for the output
operation,

The Translate Logical Name (STRNLOG) system service
translates the 1logical name SYSSINPUT. On return from
$TRNLOG, the equivalence name is checked for a 4-byte header
beginning with an escape character., (This header is present
for all process permanent files; see Section 5.3.2, "Logical
Name and Equivalence Name Format Conventions.")

If this header 1is present, the program modifies the
descriptor for the device name -returned, so it can be used as
input to SASSIGN.

SASSIGN assigns a channel and writes the <channel number at
TTCHAN,

If the SASSIGN service completes successfully, the SINPUT
macro reads a line from the terminal, and requests that the
completion status be posted in the I/0 status block defined
at TTIOSB.

The process waits until the I/0 is complete, then checks the
first word 1in the I/0 status block for a successful return.
If not successful, the program takes an error path.

Next, the length of the string read 1is moved into the
longword at OUTLEN. This is necessary because the S$SOUTPUT
macro requires a longword argument, but the length field of
the 1I/0 status block is only a word long. The S$OUTPUT macro
writes the line just read to the terminal.

The program performs error checks: first, it -ensures that
the $OUTPUT macro successfully queued the I/O request; then,
when the request is completed, it ensures that the 1I/0 was
successful.

When all I/0 operations on the <channel are finished, the
channel is deassigned. :

INPUT/OUTPUT SERVICES

6.8 CANCELING I/O REQUESTS

If a process must cancel an I/0 request that has been queued but not
yet completed, it can issue the Cancel I/0 On Channel (SCANCEL) system
service. All pending I/0 requests issued by the process on that
channel are canceled.

For example, the $CANCEL system service can be called as follows:

$CANCEL...8 CHAN=TTCHAN

In this example, the SCANCEL system service initiates the cancellation

of all pending I/O requests to the channel whose number is located at
TTCHAN.,

The $CANCEL system service returns after initiating the cancellation
of the I/0 requests., If the call to $QIO specified an event flag, AST
service routine, or I/0 status block, the system sets the flag,
delivers the AST, or posts the I/0O status block as appropriate when
the cancellation is actually completed.

6.9 DEVICE ALLOCATION

Many I/0 devices are shareable; that is, more than one process can
access the device at a time. Each process, by issuing a $ASSIGN
service, is given a channel to the device for I/0 operations.

In some cases, a process may need exclusive use of a device so that
data is not affected by other processes. To reserve a device for
exclusive use you must allocate it.

Device allocation is normally accomplished from the command stream,
with the ALLOCATE command. A process can also allocate a device by
calling the Allocate Device (SALLOC) system service, When a device
has been allocated by a process, only the process that allocated the
device and any subprocesses it creates can assign channels to the
device.

When you code the $ALLOC system service, you must provide a device
name., The device name specified can be:

e A physical device name, for example, the tape drive MTB3:
e A logical name, for example, TAPE
e A generic device name, for example, MT:

If you specify a physical device name, $ALLOC attempts to allocate the
specified device.

If you specify a logical name, $ALLOC translates the logical name and
attempts to allocate the physical device name equated to the logical
name.

If you specify a generic device name, that is, if you specify a device
type but do not specify a controller and/or unit number, $ALLOC
attempts to allocate any device available of the specified type. More
information on the allocation of devices by generic names is provided
in Section 6.10.1.

When you specify logical names or generic device names, you must
provide fields for the $SALLOC system service to return the name and

INPUT/OUTPUT SERVICES
the length of the physical device that is actually allocated, so you
can provide this name as input to the $ASSIGN system service,

Figure 6-3 illustrates the allocation of a tape device specified by
the logical name TAPE.

LOGDEV?: +ASCID /TaAPE/ SDESCRIFTOR FOR LOGICAL NAME
DEVIESCS FRESCRIFTOR FOR FHYSICAL NAME

+LONG 44 FLENGTH OF BUFFER

+ LONG NEVDESCHS FAUDRESS OF BUFFER

+BLRKR 64 FGET PHYSICAL NAME RETURNED
TAPECHAN?

+ BLRW 1 FCHANNEL FOR TAFE 1/0

+

© 40LL0C.S DEUNAM=L.OGREVy FHYLEN=DEVDESC s FHYRUF =NEVIESC
RERU ERROR
SABEION..S DEVUNAM=DEVIESC s CHAN=TAFECHAN $ASSIGN CHANNEL

BSEW ERROR
. SCONTINUE WITH I/0
© $DASHEN..S CHAN=TAFECHAN PNEASS TGN CHANNEL
RERW ERROR
$0ALLOC.S DEVUNAM=DEVRESC SNEALLOCATE TAFE

Figure 6-3 Device Allocation and Channel Assignment

Notes on Figure 6-3:

© The saLLOC system service call requests allocation of a
device corresponding to the logical name TAPE, defined by the
character string descriptor LOGDEV. The argument DEVDESC
refers to the buffer provided to receive the physical device
name of the device actually allocated and the length of the
hame string. SALLOC translates the logical name TAPE, and
returns the equivalence name string of the device actually
allocated 1into the buffer at DEVDESC. It writes the length
of the string in the first word of DEVDESC.

@® The $ASSIGN command uses the character string returned by the
$ALLOC system service as the input device name argument, and
requests that the channel number be written into TAPECHAN.

©® When I/0 operations are completed, the $DASSGN system service
deassigns the channel and the $DALLOC system service
deallocates the device. The channel must be deassigned
before the device can be deallocated.

6.9.1 Implicit Allocation

Devices that cannot be shared by more than one process, for example,
terminals and 1line printers, do not have to be explicitly allocated.
Since they are nonshareable, they are implicitly allocated by the
$ASSIGN system service when $ASSIGN is called to assign a channel to
the device.

INPUT/OUTPUT SERVICES

6.9.2 Deallocation

When the program has finished using an allocated device, it should
release the device with the Deallocate Device ($DALLOC) system
service, to make it available for other processes as in this example:

$0AL.LOC..S DEVNAM=DEVDESC

The system automatically deallocates devices allocated by an image at
image exit.

6.10 LOGICAL NAMES AND PHYSICAL DEVICE NAMES

When a device name is specified as input to an I/0 system service, it
can be a physical device name or a logical name., When an underscore
character (_) precedes a device name string, it indicates that the
string is a physical device name string. For example:

TTNAMES +ASCID /. TTR3:/

Any string that does not begin with an wunderscore 1is considered a
logical name, even though it may be a physical device name. The
SASSIGN, S$DASSGN, S$ALLOC, and SDALLOC system services call the
Translate Logical Name (STRNLOG) system service to search the logical
name tables. The S$TRNLOG service searches the process, group, and
system tables, in that order, and 1if it locates an entry for the
specified logical name, the I/0 request is performed for the device
specified in the equivalence name string. The search 1is not
recursive; that is, if the result of the translation 1is another
logical name, the $TRNLOG service does not further translate the
result (see Section 5.4, "Recursive Translation").

If STRNLOG does not locate an entry for the 1logical name, the 1I/0O
service treats the name that is specified as a physical device name.
When you code the name of an actual physical device in a call to one
of these services, code the underscore character to bypass the logical
name translation.

When the SALLOC system service returns the device name of the physical
device that has been allocated, the device name string returned is
prefaced with an underscore character. When this name is used for the
subsequent $ASSIGN system service, the S$SASSIGN service does not
attempt to translate the device name.

If you use logical names in I/0 service calls, you must be sure to
establish a wvalid device name equivalence before program execution.
You can do this by issuing an ASSIGN command from the command streanm,
or by having the program establish the equivalence name before the I/0
service call with the Create Logical Name (SCRELOG) system service.

For details on how to create and use logical names, see Chapter 5,
"Logical Name Services."

6.10.1 Device Name Defaults

If, after logical name translation, a device name string in an 1I/0
system service call does not fully specify the device name (that is,
device, controller, and unit), the service either provides default
values for nonspecified fields, or provides values based on device
availability.

INPUT/OUTPUT SERVICES

The following rules apply:

e The $ASSIGN, S$DASSGN, and $DALLOC system services apply
default values as shown in Table 6-1.

e The S$ALLOC system service treats the device name as a generic
device name and attempts to find a device that satisfies the
components of the device name that are specified, as shown in
Table 6-1.

Table 6-1
Default Device Names for I/O Services

Device Name

Final Device Defaults for Generic Device
Name $ASSIGN, $DASSGN, | Names Used
Specification | and $DALLOC by $ALLOC

DD: DDAO: (unit O DDcn: (any available device of
on controller A) the specified type)

DDC: DDCO: (unit 0 DDCn: (any available unit on
on controller the specified controller)
specified)

DDN: DDAN: (unit DDcN: (device of specified
specified on type and unit on any available
controller A) controller)

DDAN : DDAN: DDAN:

Key:

DD: 1is the device type specified
C: is the controller specified

c: is any controller
N: is the unit number specified
n: is any unit number

6.11 OBTAINING INFORMATION ABOUT PHYSICAL DEVICES

In cases where a generic (that is, nonspecific) device name is used in
an I/O0 service, the program may need to find out what device has
actually been used. The Get I/0O Channel Information ($GETCHN) system
service provides specific information about the physical device to
which a channel has been assigned. The Get 1I/0 Device Information
(SGETDEV) system service returns information about a device that is
identified by its device name. The information returned includes the
unit number of the device, as well as additional device
characteristics.

When you code the $GETCHN or $GETDEV service, you must provide the
address of a buffer or buffers into which the system writes the
information. The format of the buffer and additional details about
these services are given in Part II. Details on the device-specific
information these services return is given in the VAX/VMS 1I/0 User's
Guide.

INPUT/OUTPUT SERVICES

6.12 FORMATTING OUTPUT STRINGS

When you are preparing output strings for a program, you may need to
insert variable information into a string prior to output, or you may
need to convert a numeric value to an ASCII string. The Formatted
ASCII Output (SFAO) system service performs these functions.

Input to the $FAO service consists of:

e A control string that contains the fixed text portion of the
output and formatting directives. The directives indicate the
position within the string where substitutions are to be made,
and describe the data type and length of the input values that
are to be substituted or converted.

e An output buffer to contain the string after conversions and
substitutions have been made.

e An optional argument indicating a word to receive the final
length of the formatted output string.

e Parameters that provide arguments for the formatting
directives.

Figure 6-4 shows a call to the $FAO system service to format an output
string for a S$OUTPUT macro. Accompanying notes briefly discuss the
input and output requirements of FAO. Complete details on how to use
FAO, with additional examples, are provided in the description of the
$FAO system service in Part II.

@ FADSTRE LASCID /FILE 1AS DOES NOT EXIST/ SDESCRIFTOR FOR
SFAD CONTROL STRING

@ rADDESC: SDESCRIFTOR FOR FAO OQUTRUT
+LLONG 80 FLENGTH OF BUFFER
+LLONG FAORUF FANNRESS OF RUFFER
FAQRUF? JBLKER 80 SRUFFER FOR Fa0 QUTFUT
FADLEN? JLONG 0O FRECETVE LENGTH OF FAQ OUTPUT STRING

© FILESFEC: JASCID /DMALIMYFILE.DAT/ SLESCRIFTOR FOR FAD FARAMETER

+

O $rFA0..§ CTRSTR=FAOSTR y OUTLEN=FAOLENy QUTBUF =FADDEST y ~
F1=3FILESPFEC FRARAMETER FOR FAD
BRSRW ERROR
O $0UTFUT .. » BUFFER=FAORUF » LENGTH=F AOLEN
RSRW ERROR

Figure 6-4 Example of Using Formatted ASCII Output Program
Notes on Figure 6-4:

@ FAOSTR provides the FAO control string. !AS is an example of
an FAO directive: it requires an input parameter that
specifies the address of a character string descriptor. When
FAO is called to format this control string, !AS will be
substituted with the string whose address is specified.

@® FAODESC is a character string descriptor for the output
buffer; $FAO will write the string into the buffer, and will
write the 1length of the final formatted string in the
low-order word of FAOLEN. (A longword is reserved so that it
can be used for an input argument to the $SOUTPUT macro.)

INPUT/OUTPUT SERVICES

© FILESPEC is a character string descriptor defining an input
string for the FAO directive !AS.

® The call to $FAO specifies the control string, the output
buffer and length fields, and the parameter P1l, which is the
address of the string descriptor for the string to be
substituted.

® when $FAO completes successfully, SOUTPUT writes the output
string:

FILE DMAl :MYFILE.DAT DOES NOT EXIST

6.13 MAILBOXES

Mailboxes are virtual devices that can be wused for communication
between processes. Actual data transfer is accomplished by using RMS
or I/0 services. When the create Mailbox and Assign Channel ($CREMBX)
service creates a mailbox, it also assigns a channel to it for use by
the creating process., Other processes can then assign channels to the
mailbox using either the SCREMBX or $ASSIGN system service. (If the
mailbox is located in memory shared by multiple processors, the first
process on each processor to create or assign a channel to a mailbox
must use the $SCREMBX service.)

The Create Mailbox and Assign Channel ($CREMBX) system service creates
the mailbox. The $CREMBX system service identifies a mailbox by a
user-specified logical name and assigns it an equivalence name. The
equivalence name is a physical device name in the format MBn: where n
is a unit number.

When another process assigns a channel to the mailbox with the $CREMBX
or $ASSIGN system service, it can identify the mailbox by its logical
name, The service automatically translates the 1logical name. The
process can obtain the MBn: name by translating the logical name
(with the $TRNLOG system service), or it can call the Get I/0 Channel
Information ($SGETCHN) system service to obtain the unit number and the
physical device name.

Mailboxes are either temporary or permanent, The user privileges
TMPMBX and PRMMBX are required to create temporary and permanent
mailboxes, respectively.

For a temporary mailbox, the SCREMBX service enters the 1logical name
and equivalence name in the group logical name table of the process
that created it. The system deletes a temporary mailbox when no more
channels are assigned to it.

For a permanent mailbox, the SCREMBX service enters the logical name
and equivalence name in the system logical name table. Permanent
mailboxes continue to exist until they are specifically marked for
deletion with the Delete Mailbox (SDELMBX) system service.

A mailbox located in memory shared by multiple processors is also
deleted when all of the following occur:

® A processor is rebooted
e The multiport memory is not reinitialized

e No other processor has any processes with channels assigned to
the mailbox.

INPUT/OUTPUT SERVICES

Figure 6-5 shows an example of processes communicating by means of a
mailbox. The accompanying notes explain some of the arguments that
the SCREMBX system service requires,

[process ORION]

MELOGNAM! +ASCID /GROUPL100.L.MAILROX/ SFDESCRIFTOR FOR MAILEOX LOG. NAME

MRUFFER?! BLKR 128 FINPUT RBRUFFER FOR MAILROX READS
MBUFLEN? JLONG 128 SRUFFER LENGTH (128 RYTES)
MEXCHAN! (BLKW 1 FMATILEBOX CHANNEL NUMBER
MEXIOSE: JBRLKW 1 $I0SE FIRST WORD (STATUS)
MEBLEN? +BLKW 1 FIOSE 2ND WORD CLENGTH)
RBLKL 1 FREMAINDER OF I0OSE

OUTLEN? «BLKL 1 SLONGWORD TO GET LENGTH
JENTRY ORIONy "MIRZyR3IvR4x SENTRY MASK

$CREMEX..S PRMFL.G=80y CHAN=MEXCHAN y MAXMSG=MRBUFI.EN--

RUFQUO=#384 » FROMSK=4"XQ000 v LOGNAM=MEL.OGNAM
REBW ERROR
@ $Q10.8 CHAN=MEXCHAN, FUNC=#10%.READVELKy TOSE=MEXTOSEy ~
ASTADR=MEXAST y P L =MRBUFFER y P 2:=MRBUFLEN
BRERW ERROR

RET
MEXAST: JWORD 0 © FAST ROUTINE ENTRY MASK
CMPW MBXIOSRy#S5G$..NORMAL §1/0 SUCCESSFULT?
BNEQ ASTERR FRRANCH TF NOT
MOVZWL. MBLENyOUTLEN FMAKE LENGTH A LONGWORD

SOUTFUT + o o s BUFFER=MBUFFER s LENGTH=0UTLENy « « «
REERW ERROR

+

RET

Process CYGNUS]

MATLEOX: JASCID /ZGROUFLIO0.MATLROX/ SRESCRIFTOR FOR MAILROX LOG. NAME

MATL.CHANS $MATLROX CHANNEL NUMEER
+BLKW 1
OUTRUF? JRBLRKE 128 SRUFFER FOR OQUTPUT M8G DATA
OUTLEN? (BLKL 1 SWILL CONTAIN LENGTH OF MSG
<+
JENTRY CYGNUSy "MAR2yRIyR4: FENTRY MAGK
O $ASSIGN.S DEUNAM=MATLROXy CHAN=MATL.CHAN $ASGSTGN CHANNEL

BRERW ERROR
$OUTPUT CHAN=MATLCHANy RUFFER=OUTRUF ¢ LENGTH=0UTLENy + 4
BSERW ERROR

°

RET

Figure 6-5 Mailbox Creation and I/0O

6-16

INPUT/OUTPUT SERVICES

Notes on Figure 6-5:

6.13.1

Process ORION creates the mailbox and receives the channel
number at MBXCHAN.

This PRMFLG argument indicates that the mailbox Iis a
temporary mailbox. The logical name is entered in the group
logical name table.

The MAXMSG argument limits the size of messages that the
mailbox can receive. Note that the size indicated in this
example is the same size as the buffer (MBUFFER) provided for
the $QIO request. A buffer for mailbox I/O must be at least
as large as the size specified in the MAXMSG argument,

When a process creates a temporary mailbox, the amount of
system memory that 1is allocated for buffering messages is
subtracted from the process's buffer quota. Use the BUFQUO
argument to specify how much of the process quota you want to
be used for mailbox message buffering.

Mailboxes are protected devices. By specifying a protection
mask with the PROMSK argument, you can restrict access to the
mailbox. (In this example, all bits in the mask are clear,
indicating unlimited read and write access.)

After creating the mailbox, Process ORION issues a $QIO
system service, requesting that it be notified when 1/0
completes (that is, when the mailbox receives a message) by
means of an AST interrupt. The process can continue
executing, but the AST service routine at MBXAST will
interrupt and begin executing when a message has been
received.

When a message is sent to the mailbox (by CYGNUS), the AST is
delivered and ORION responds to the message. ORION gets the
length of the message from the first word of the I/0 status
block at MBXIOSB and places it in the longword OUTLEN so it
can pass the length to SOUTPUT.

Process CYGNUS assigns a channel to the mailbox, specifying
the 1logical name the process ORION gave the mailbox. The
SOUTPUT form of the $QIOW system service writes a message
from the output buffer provided at OUTBUF.

Note that on a write operation to a mailbox, the I/0 1is not
complete wuntil the message is read, unless you specify the
IOSM_NOW function modifier. Therefore, if SQIOW (without the
IO$M_NOW function modifier) or $SOUTPUT is used to write the
message, the process will not continue executing until
another process reads the message.

Mailbox Name Format

The logical name string assigned to a mailbox determines whether it is
located in memory that is used by a single processor or in memory that
is shared by multiple processors. The LOGNAM argument to the $CREMBX

service

specifies a descriptor that points to a character string with

the following format:

[shared-memory-name:]mailbox-name

INPUT/OUTPUT SERVICES

shared-memory-name

Locates the mailbox within the named memory that is shared by
multiple processors. The name of this memory was specified at
system generation time. For example, the string SHRMEMS$1:CHKPNT
identifies a mailbox named CHKPNT located in the shared memory
named SHRMEMS1.

If this part of the string is not included, the mailbox is not
located in memory that is shared by multiple processors.

mailbox-name
The name assigned to the mailbox (1 to 15 characters in length).

If you wish, you can 1include both the shared-memory-name and the
mailbox-name for a mailbox in memory shared by multiple processors.
However, if you want to use existing programs without recompiling or
relinking, you can specify Jjust a mailbox-name and have the system
translate it to a complete specification. The system attempts to
perform logical name translation of the string specified by the LOGNAM
argument in the following manner:

1. MBX$ is prefixed to the string (to the part before the colon
if both parts are present), and the result is subjected to
logical name translation. If the translation does not
succeed, the string (without the MBX$ prefix) is made a
logical name with an equivalence name MBn: ("n" is a number
assigned by the system).

2. The part of the string after the colon (if any) 1is appended
to the translated name.

3. If the result contains a logical name, steps 1 and 2 are
repeated (up to 9 more times, if necessary) until translation
does not succeed.

For example, assume that you have made the following 1logical name
assignment:

% DEFINE MBX$CHKPNT SHRMEMS$1L $CHRKFNT
Assume that your program also contains the following statements:
MEXDESC: JASCID /ZCHRKPNT/ SDESCRIFTOR FOR MAILROX LOGICAL NAME

+

S$OREMBX..$ LOGNAME=MEXDESCy .o

The following logical name translation takes place:

1. MBX$ is prefixed to CHKPNT.
2. MBXSCHKPNT is translated to SHRMEMS1:CHKPNT.
Since no further translation is successful, the logical name CHKPNT is

created with the equivalence name MBn: ("n" is a number assigned by
the system).

INPUT/OUTPUT SERVICES

There is one exception to the translation method described in this
section, If the name string starts with an underscore (_), the
VAX/VMS system strips the underscore and considers the resultant

string to be the actual name (that is, no further translation is
performed).

6.13.2 System Mailboxes

The system uses mailboxes for communication among system processes,
All system mailbox messages contain, in the first word of the message,
a constant that identifies the sender of the message. These constants
have symbolic names (defined in the S$MSGDEF macro) in the format:

MSG$_sender

The remainder of the message contains variable information, depending
on the system component that is sending the message.

The format of the variable information for each message type |is
documented with the system function that uses the mailbox.

6.13.3 Mailboxes for Process Termination Messages

When a process creates another process, it can specify the unit number
of a mailbox as an argument to the Create Process ($CREPRC) system
service. When the created process is deleted, the system sends a
message to the specified termination mailbox. An example of how to
create and use a termination mailbox is provided in Section 7.7.2,
"Termination Mailboxes,"

A mailbox in memory shared by multiple processors cannot be used as a
process termination mailbox.

6.13.4 Mailboxes for System Processes

Certain I/0 services are used internally by system processes to
communicate various kinds of information. These services are:

e Send Message to Accounting Manager (SSNDACC)
e Send Message to Operator ($SSNDOPR)
e Send Message to Symbiont Manager ($SNDSMB)
Details on the formats of the messages and the information they

provide are given in the individual discussions of these services in
Part II.

CHAPTER 7

PROCESS CONTROL SERVICES

A process is the primary execution agent in VAX/VMS. When you log
into the system, the system creates a process for the execution of
program images. You can create another process to execute an image by
issuing the RUN command using any of the special qualifiers that
pertain to process creation. You can also code a program that creates
another process to execute a particular image.

Process control services allow you to create processes and to control
a process or group of processes. Included in this chapter are
discussions of:

° Subprocesses and detached processes

° The execution context of a process

. Process creation

) Interprocess control and communication

. Process hibernation and suspension

. Image exit and exit handlers

. Process deletion and termination messages

7.1 SUBPROCESSES AND DETACHED PROCESSES

A process is either a subprocess or a detached process. A subprocess
receives a portion of its creator's resource quotas and must terminate
before the creator. A detached process 1is fully independent; for
example, the process the system creates for you when you log in is a
detached process.

The Create Process (SCREPRC) system service creates both subprocesses
and detached processes. The ability to create subprocesses Iis
controlled by the PRCLM quota. The ability to create detached
processes is controlled by the DETACH privilege.

PROCESS CONTROL SERVICES

7.2 THE EXECUTION CONTEXT OF A PROCESS

The execution context of a process defines a process to the system.
It includes:

e The image that the process is executing

e The input and output streams for the image executing in a
process

e Disk and directory defaults for the process

e System resource quotas and user privileges available to a
process

When the system creates a detached process as the result of a login,
it wuses the system authorization file to determine the process's
execution context.

For example, when you log into the system:

e The process created for vyou executes the image known as
LOGINOUT.

e The terminal you are using 1is established as the input,
output, and error stream for images that the process executes.

® Your disk and directory defaults are taken from the user
authorization file.

e The resource quotas and privileges you have been granted by
the system manager are associated with the created process.

When you code the S$CREPRC system service to <create a process, you
define the context by specifying arguments to the service.

7.3 PROCESS CREATION

The following subsections (7.3.1 to 7.3.5) show examples of process
creation and describe how the arguments you code to the $CREPRC system
service define the context of the process.

7.3.1 Defining an Image for a Subprocess to Execute

When you code the SCREPRC system service, use the IMAGE argument to
provide the process with the name of an image (program) to execute.
For example, the following lines create a subprocess to execute the
image named LIBRA.EXE.

FROGNAME S «ASCTID /LIRRA/ SOESCRIPTOR FOR IMAGE TO EXECUTE

$CREFRC..S IMAGE=FROGNAME FCREATE FROCESS TO EXECUTE LIERA

In this example, only a file name 1is specified; the service uses
current disk and directory defaults, performs logical name
translation, uses the default file type of EXE, and locates the most
recent version of the image file. When the subprocess completes
execution of the image, the subprocess is deleted. Process deletion
is described in Section 7.7.

PROCESS CONTROL SERVICES

7.3.2 Input, Output, and Error Devices for Subprocesses

When you code the SCREPRC system service you can provide equivalence
names for the 1logical names SYS$INPUT, SYSSOUTPUT, and SYSSERROR.
These logical name/equivalence name pairs are placed in the process
logical name table for the created process. ‘

Figure 7-1 shows an example of defining input, output, and error
devices for a subprocess. The notes indicate how these devices are
used.

INSTREAM: ASCID /SUR.MATL..EBOX/ FDESCRIFTOR FOR INFUT STREAM
QUTSTREAM: ASCID /COMPUTE..QOUT/ SOESCRIFTOR FOR QUTRUT STREAM
FROGNAME: JASCID /COMPUTE . EXE/ PROESCRIFTOR FOR TMAGE NAME

. (1)
S$CREFRC..S IMAGE=FROGNAME y INFUT=INSTREAMy ~ FCREATE FROCESS
OUTPUT=0UTSTREAM » ERROR=0UTSTREAM

2] (3]

Figure 7-1 Defining Input and Output Streams for a Subprocess

Notes on Figure 7-1:

@ The INPUT argument equates the equivalence name SUB_MAIL_BOX
to the 1logical name SYSSINPUT. This logical name may
represent a mailbox that the <calling process previously
created with the Create Mailbox and Assign Channel ($CREMBX)
system service. Any input the subprocess reads £from the
logical device SYSSINPUT will be read from the mailbox.

® The OUTPUT argument equates the equivalence name COMPUTE_OUT
to the 1logical name SYSSOUTPUT. All messages the program
writes to the logical device SYS$OUTPUT will be written to
this file.

G’ The ERROR argument equates the equivalence name COMPUTE_OUT
to the 1logical name SYS$SERROR., All system—generated error
messages will be written into this file. Since this 1is the
same file as that wused for program output, the file
effectively contains a complete record of all output produced
during the execution of the program image.

The $CREPRC system service does not provide default equivalence names
for the 1logical names SYSSINPUT, SYSSOUTPUT, and SYSSERROR; if none
are specified, entries in the group or system logical name tables, if
any, may provide equivalences. 1If, while the subprocess executes, it
reads or writes to one of these logical devices and no equivalence
name exists, an error condition results.

In a program that creates a subprocess, you can cause the subprocess
to share the input, output, or error devices of the creating process.
The following steps are required:

e Use the Translate Logical Name ($TRNLOG) system service to
obtain the current equivalence name for the logical name
SYSSINPUT, SYSSOUTPUT, or SYSSERROR.

e Check whether the equivalence name returned contains system
header information (a 4-byte field beginning with an escape
character); 1if the logical name table entry was created by
the command interpreter, it will contain this header, 1If

PROCESS CONTROL SERVICES

there is a header, adjust the length of the string returned
and the address of the string returned by modifying these
fields in the character string descriptor of the resultant
name string.

e Specify the address of this descriptor when you code the
INPUT, OUTPUT, or ERROR arguments to the S$CREPRC system
service.,

This procedure is illustrated in the following example,

NIESC FDESCRIFTOR FOR RESULT

NLEN? « LONG 63 SLENGTH OF STRING RETURNED
NADDORS: JLONG NAME $ADDRESS OF STRING

NAME ? +BLKR 43 SNEVICE NAME STRING RETURNED
INFUT: ABCID /8SYS$INFUT/ FLOGICAL DEVICE NAME DESCRIPFTOR

*

+

$TRNL.OG..S LOGNAM=INPUT s RELLEN=NLENy RSLEBUF=NRESC

BSEW ERROR §RRANCH IF ERROR

CMFR NAME » " X1 R PFIRST RBRYTE AN ESCAFE?
BNEQ 104 FNOy DONT ADJUST

SURL #4 9 NL.EN FOURBTRACT 4 FROM LENGTH
AL £4yNADDR FAND 4 TO ANDRESS

1088 SOREFRC..S « o o vy INFUT=NDESCy OUTFUT=NOESCy o o o

When the subprocess executes, the 1logical names SYSSINPUT and
SYSSOUTPUT are equated to the device name of the creating process's
logical input device.

The subprocess can then use RMS to open the file for reading and/or
writing; or the subprocess can use the Assign I/0 Channel ($ASSIGN)
system service to assign an I/0 channel to this device for
input/output operations by specifying the device name as the logical
name SYSSOUTPUT. For example:

OUTFUT: JASCIN /8YS8$0UTHRUT/ FLOGICAL NAME DESCRIPTOR
OUTCHAN: BLKW 1 $CHANNEL NUMERER OF QUTPUT DEVICE
*

$ASEIGN..ES DEVNAM=DUTFUT y CHAN=QUTCHAN

Logical name translation is described in more detail in Chapter 5,
"Logical Name Services." For more information on channel assignment
for I/0 operations, see Chapter 6, "Input/Output Services."

7.3.3 Disk and Directory Defaults for Created Processes

When you use the SCREPRC system service to create a process to execute
an image, the system locates the image file within the context of the
created process. A subprocess inherits the current default device and
directory of its creator. A detached process uses the default device
and directory specified for its creator in the system user
authorization file.

If a created process runs an image that 1is not 1in its default
directory, you must identify the directory and perhaps also the device
in the file specification of the image to be run. Similarly, if a
created process uses an input, output, or error stream that is not its

PROCESS CONTROL SERVICES

current default (SYS$INPUT, SYSSOUTPUT, or SYSSERROR), you must
provide a sufficiently complete file specification.

There is no way to define an alternative default device and/or
directory at process creation, The created process can, however,
define an equivalence for the logical device SYS$DISK by calling the
Create Logical Name ($SCRELOG) system service. If the process is a
subprocess, you can define an equivalence name in the group logical
name table, The created process can also set 1its own default
directory by calling the RMS Default Directory control routine. For
details on how to call this routine, see the VAX-1l Record Management
Services Reference Manual.

7.3.4 Controlling Resources of Created Processes

Ordinarily, when you create a subprocess you need only assign it an
image to execute and, optionally, SYSSINPUT, SYSSOUTPUT, and SYSSERROR
devices. The system provides default values for the process's
privileges, resource quotas, execution modes, and priority. In some
cases, however, you may want to specifically define these values. The
arguments to the $CREPRC system service that control these
characteristics are listed below, with considerations for their use.
For details, see the argument descriptions of SCREPRC in Part II.

e PRVADR - this argument defines the privilege 1list for the
created process. Normally, a subprocess will have its
creator's current privileges, and a detached process will have
the privileges specified for its creator in the system user
authorization file., 1In some circumstances, you may need to
create a process that has a special privilege, but you must
have the user privilege SETPRV to provide a subprocess with a
privilege you do not have.

Symbols associated with privileges are defined by the $PRVDEF
macro. Each symbol begins with PRVSV and identifies the bit
number that must be set to specify a given privilege. The
following example shows the data definition for a mask
specifying the GRPNAM and GROUP privileges.

PRUMSBK S L L.ONG SLEFRVSVLLGRFNAME L1 @PRVSVLGROUP:
o LONG ¢} FAUADIWORD

® QUOTA - this argument defines the quota list for a subprocess
Since a subprocess receives a portion of its creator's quotas
for timer queue entries, I/0 buffers, and so on, you may want
to control how much of each quota you want assigned to the
subprocess. If you do not <code this argument, the system
defines default quotas for the subprocess; however, if your
process has only the default quotas, you must code this
argument to prevent the subprocess from exhausting all the
process's deductible quotas.

e STSFLG - the status flag is a set of bits that control some
execution characteristics of the created process, including
resource wait mode and process swap mode.

® BASPRI - this argument sets the base execution priority for
the created process. If not specified, it defaults to 2 for
VAX-11 MACRO and VAX-11] BLISS-32 and 0 for other languages.
If you want a subprocess to have a higher priority than its
creator, you must have the user privilege ALTPRI to raise the
priority level.

PROCESS CONTROL SERVICES

7.3.5 Detached Processes

The creation of a detached process is primarily a system function;
the DETACH ©privilege controls the ability to «create a detached
process, The UIC argument to the SCREPRC system service defines
whether a process is a subprocess or a detached process; it provides
the created process with a user identification code (UIC). If you

omit the UIC argument, the SCREPRC system service creates a subprocess
that executes with your UIC.

7.4 INTERPROCESS CONTROL AND COMMUNICATION

Processes can be wholly independent, or they can be cooperative. You
may develop an application that requires the concurrent execution of
many programs. The following subsections discuss the things you might
consider when you develop such applications.

7.4.1 Restrictions on Process Creation and Control
There are three levels of process control privilege:

1. The creator of a subprocess can always issue control
functions for that subprocess.

2. The GROUP privilege is required to 1issue process control
functions for other processes executing in the same group.

3. The WORLD privilege is required to issue process control
functions for any process in the system.

Additional privileges are required to perform some specific functions,
for example, to set a process's base priority to a higher level than
that of the requestor.

7.4.2 Process Identification

In the examples shown in the preceding sections, the subprocesses are
not identified. Once created, the subprocesses execute according to
the image name or the input stream specified and are deleted when they
complete execution.

However, if you want to control the execution of a subprocess, you
must identify it. You must also identify detached processes that
execute in the same group if they communicate with each other or issue
control functions affecting each other,

There are two levels of process identification:

1. Process identification number (PID). The system assigns this
unique 32-bit number to a process when it is created. If you
provide the PIDADR argument to the $CREPRC system service,
the system returns the process identification number at the
location specified. You can then use the process
identification number in subsequent process control services.

PROCESS CONTROL SERVICES

2., Process name. A process name is a 1- through 15-character
text name string. Each process name must be unique within
its group (processes in different groups can have the same
name) . You can assign a name to a process by coding the
PRCNAM argument when you create it. VYou can then wuse this
name to refer to the process in other system service calls,

For example, you might code a $CREPRC system service as follows:

ORION: LASCID /ORION/ SNESCRIPTOR FOR FROCESS NAME
ORTONID?
+LONG 0 FPROCESS TD RETURNED

$CREFRC..S PRONAM=0ORTON FINADR=0RTONIIy o ¢ o

The service returns the process identification in the longword at
ORIONID. You can now use either the process name (ORION) or the
process identification (ORIONID) to refer to this process 1in other
system service calls,

A process can set or change its own name with the Set Process Name
($SETPRN) system service. For example, a process can set its name to
CYGNUS as follows:

CYGNUST ABCID ZCYGNUS/ SNESCRIPTOR FOR PROCESS NAME

L4

SBETHRN.L.S FRONAM=CYGNUS

Most of the process control services accept either the PRCNAM or
PIDADR arguments, or both. However, you are encouraged to identify a
process by its process identification for the following reasons:

e The service executes faster because it does not have to search
a table of process names.

e You must use the process identification for a process not in
your group (see Section 7.4.2.1).

When the PIDADR argument is coded and the specified address contains a
0, the services return the process identification. Thus, you can
obtain the process identification for a process by issuing any control
function, as long as you know the process name.

If neither argument is specified, the service 1is performed for the
calling process. For a summary of the possible combinations of these
arguments and an explanation of how the services interpret them, see
Table 7-1.

PROCESS CONTROL SERVICES

Table 7-1
Process Identification

Is A Is A

Process Process ID | Process ID

Name Address Address Resultant Action by Services

Specified? | Specified? | Contains:

no no - The process identification of
the calling process is used.
The process identification is
not returned.

no yes zero The process identification of
the calling process 1is used
and returned.

no yes process id | The process identification is
used and returned.

yes no - The process name is used. The
process 1identification is not
returned.

yes yes zero The process name is used and
the process identification is
returned.

yes yes process id | The process identification is
used and returned.

7.4.2.,1 Process Naming within Groups: Process names are always

qualified by their group number. The system maintains a table of all
process names; and when a PRCNAM argument is specified in a process
control service, the service searches for the process name specified
and for a match on the group number, This search £fails 1if the
specified process name does not have the same group number. The
search fails even if the calling process has world control privilege.
To execute a process control service for a process that is not in the
caller's group, the requesting process must use a process
identification.

7.4.2.2 Obtaining Information about Processes: The
Information ($GETJPI) system service
information about itself or another
about

II.

Get Job/Process
allows a process to obtain
process. For complete details

the $GETJPI system service, see the service description in Part

7.4.2.3 Techniques for Interprocess Communication:
ways that processes can communicate:

There are several

e Common event flag clusters
e Logical name tables
e Mailboxes

e Global sections

PROCESS CONTROL SERVICES

Common Event Flag Clusters: Processes executing within the same group
can use common event flag clusters to signal the occurrence or
completion of particular activities. For details on event flags,
event flag clusters, and an example of cooperating processes in the
same group using a common event flag, see Chapter 3, "Event Flag
Services."

Logical Name Tables: Processes executing in the same group can use
the group logical name table to provide member processes with
equivalence names for logical names. At least one member of the group
must have the user privilege to place names in the group logical name
table. For details on logical names and 1logical name tables, see
Chapter 5, "Logical Name Services."

Mailboxes: Mailboxes can be used as virtual input/output devices to
pass information, messages, or data among processes. For details on
how to create and use mailboxes, with an example of cooperating
processes wusing a mailbox, see Chapter 6, "Input/Output Services.,"
Mailboxes may also be used to provide a creating process with a way to
determine when and under what <condition a created subprocess was
deleted., See Section 7.7.2 for an example of a termination mailbox.

Global Sections: Global sections are disk files containing shareable
code or data. Through the use of memory management services, these
files can be mapped to the virtual address space of more than one
process. In the case of a data file, cooperating processes can
synchronize reading and writing the data in physical memory; as the
data is updated, system paging results 1in the updated data being
written directly back into the disk file, Global sections are
described in more detail in Section 10.6, "Sections."

7.5 PROCESS HIBERNATION AND SUSPENSION

There are two ways to temporarily halt the execution of a process:
hibernation, performed by the Hibernate ($SHIBER) system service, and
suspension, performed by the Suspend Process ($SUSPND) system service,
The process can continue execution normally only after a corresponding
Wake (SWAKE) system service if it is hibernating, or after a Resume
Process (SRESUME) system service if it is suspended.

Process hibernation and suspension are compared in Table 7-2.

PROCESS CONTROL SERVICES

Table 7-2
Process Hibernation and Suspension

Hibernation

Suspension

Can only cause
self to hibernate

Reversed by S$SWAKE
system service

Interruptible; can
receive ASTs

Can wake self

Can schedule wakeup
at an absolute time
or at a fixed time
interval

Hibernate/wake
complete quickly;
require little
system overhead

Can suspend self or another
process, depending on privilege

Reversed by SRESUME system service
Noninterruptible; cannot receive
ASTs

Cannot cause self to resume

Cannot schedule resumption

Resumption takes longer;
$SUSPEND requires system
dynamic memory

needed.

Process Hibernation

for execution and

The hibernate/wake mechanism provides an efficient way to prepare
place it in a wait state until it is
When the wake request is issued, the 1image 1is reactivated

with little delay or system overhead.

For example, if you create a subprocess that must execute the same
function repeatedly and must execute immediately when it is needed,

you could use the $HIBER and SWAKE system services as shown in Figure
7-2.

There is a variation of the SWAKE system service that schedules a
wakeup for a hibernating process at a fixed time or at an elapsed
(delta) time interval. This is the Schedule Wakeup ($SCHDWK) system
service. Using the $SCHDWK service, a process can schedule a wakeup
for itself before issuing a $HIBER call. For an example of how to use
the $SCHDWK system service, see Chapter 8, "Timer and Time Conversion
Services."

PROCESS CONTROL SERVICES

Process GEMINI

ORION?: +ASCID /ORION/ FOESCRIFTOR FOR SURFROCESS NAME
FASTCOMF! +ASCID /COMPUTE.EXE/ SDESCRIFPTOR FOR IMAGE NAME

*

© $CREFRC.S PRONAM=0RIONy IMAGE=FASTCOMFy 4o SCREATE ORTON
RERW ERROR § CONTINUE

.

© $WAKE..S§ FRONAM=0ORION SWAKE ORION
RGEW ERROR

+

$WAKE..S8 FPRONAM=0RION SWAKE, ORTON AGAIN
REBEW ERROR

+

[Process or1on]

COMFUTE S : @

+WORD ¢ ENTRY MASK

LO%: $HIBER..G SLEEF
RGRW ERROR
. FPERFORM « o
BRW 104 FRACK TO SLEEP

Figure 7-2 Process Hibernation

Notes on Figure 7-2:

@ rprocess GEMINI creates the process ORION, specifying the
descriptor for the image named COMPUTE.

® rhe image COMPUTE is initialized, and ORION issues the $HIBER
system service.

(3 At an appropriate time, GEMINI issues a $WAKE request for
ORION, ORION continues execution following the $HIBER
service call. When it finishes its job, ORION loops back to
repeat the S$HIBER call and to wait for another wakeup.

Hibernating processes can be interrupted by Asynchronous System Traps
(ASTs), as long as AST delivery is enabled. The process can issue a
SWAKE for itself in the AST service routine, and continue execution
following the execution of the AST service routine., For a description
of ASTs, and how to use them, see Chapter 4, "AST (Asynchronous System
Trap) Services."

PROCESS CONTROL SERVICES

7.5.2 Alternate Methods of Hibernation

Two additional techniques you can use to cause a process to hibernate
are:

) Code the STSFLG argument for the $CREPRC system service,
setting the bit that requests SCREPRC to place the created
process in a state of hibernation as soon as it is
initialized.

° Specify the /DELAY, /SCHEDULE, or /INTERVAL qualifiers of the
RUN command when you execute the image from the command
stream.

When you use the first method, the creating process can control when
to wake the created process. When you wuse the RUN command, the
qualifiers listed above control when the process will be awakened.

If the image to be executed does not itself «call the SHIBER system
service, the 1image 1is placed in a state of hibernation whenever it
issues a RET instruction. Each time it 1is reawakened, it begins
executing at its entry point. If the image does call $HIBER, then it
begins executing at either the point following the call to S$HIBER or
at 1its entry point (if it issues a RET instruction) each time it is
awakened.

If wakeup requests are scheduled at time intervals, the image can be
terminated with the Delete Process ($SDELPRC) or Force Exit ($FORCEX)
system services, or from the command level with the STOP command. The
SDELPRC and S$FORCEX system services are described 1later in this
chapter. The RUN and STOP commands are described in the VAX/VMS
Command Language User's Guide.

These techniques allow you to code programs that can be executed a
single time, on request, or cyclically, depending on a particular set
of circumstances. Note that the program must ensure the integrity of
data areas that are modified during its execution, as well as the
status of opened files.

7.5.3 Suspension

Using the Suspend Process ($SUSPND) system service, a process cah
place 1itself or another ©process into a wait state similar to
hibernation. Suspension, however, 1is a more pronounced state of
hibernation. A suspended process cannot be interrupted by ASTs, and
can resume execution only after another process 1issues a Resume
Process ($SRESUME) system service for it. 1If ASTs were queued for the
process while it was suspended, they are delivered when the process
resumes execution.

7.6 IMAGE EXIT

When the image executing in a process completes normally, the
operating system performs a variety of image rundown functions. If
the image was executed by the command interpreter, image rundown
prepares the process for the execution of another image. If the image
was not executed by the command interpreter -- for example, if it was
executed by a subprocess -- the rundown readies the process for
deletion.

PROCESS CONTROL SERVICES

These exit activities are also initiated when an image completes
abnormally, as a result of any of the following:

7.6.1

Specific error conditions caused by improper specifications
when a process was created. For example, if an invalid device
name is specified for SYS$SINPUT, SYSSOUTPUT, or SYS$SERROR
logical names, or if an invalid or nonexistent image name is
specified, the error condition is noted within the context of
the created process.

An exception occurring during execution of the image. When an
exception occurs, any user-specified condition handlers
receive <control to handle the -exception. If not, a
system-declared condition handler receives control, and it
initiates exit activities for the image. Condition-handling
is described in Chapter 9, "Condition-Handling Services,"

A Force Exit (SFORCEX) system service issued on behalf of the
process by another process.

Image Rundown Activities

The operating system performs image rundown functions that release
system resources that a process obtained while executing in user mode.
These activities are listed below.

Exit handlers declared from user mode, if any, are called, and
the exit control blocks are released. (Exit handlers are
described in Section 7.6.3.)

Common event flag clusters are disassociated.

User mode ASTs that are queued but have not been delivered are
deleted, and ASTs are enabled for user mode.

I/0 channels are deassigned and any outstanding I/0 requests
on the channels are canceled.

Any interrupt vectors connected with the image are
disconnected.

All devices allocated to the process at user mode are
deallocated (devices allocated from the command stream in
supervisor mode are not deallocated).

Timer-scheduled requests, including wakeup requests, are
canceled.

Logical names in the process logical name table entered in
user mode are deleted (logical names entered from the command
stream in supervisor mode are not deleted).

Exception vectors declared in user mode, compatibility mode
handlers, and change mode to user handlers are reset.

System service failure exception mode is disabled.
Memory pages occupied by the 1image are deleted and the

process's working set size limit is readjusted to its default
value.

PROCESS CONTROL SERVICES

7.6.2 The SEXIT System Service

To initiate the rundown activities described above, the system calls
the Exit ($EXIT) system service on behalf of the process. In some
cagses, a process can call S$SEXIT to terminate the image itself, for
example, if an unrecoverable error occurs.

The $EXIT system service accepts a status code as an argument. If you
use S$EXIT to terminate image execution, you can use this status code
argument to pass information about the completion of the image. 1If an
image does not «call $EXIT, the current value in RO is passed as the
status code when the system calls SEXIT.

This status code is used as follows:

® The command interpreter uses the status code to display an
error message when it receives control following image
rundown.

e If the image has declared an exit handler, the status code is
written in the address specified in the exit control block.

e If the process was created by another process, and the creator
has specified a mailbox to receive a termination message, the
status code is written in the termination message when the
process is deleted.

The use of exit handlers and termination messages requires additional
coding considerations. These considerations are discussed in greater
detail below.

7.6.3 Exit Handlers

Exit handlers are routines that can perform image-specific cleanup or
rundewn operations. For example, if an image uses system memory to
buffer data, an exit handler can ensure that the data is not lost when
the image exits as the result of an error condition.

To establish an exit handling routine, you must set up an exit control
block and specify the address of the control block on the Declare Exit
Handler ($SDCLEXH) system service. Exit handlers are called using
standard calling conventions; you can provide arguments to the exit
handler in the exit control block. The first argument in the control
block argument 1list must specify the address of a longword for the
system to write the status code from $SEXIT.

If an image declares more than one exit handler, the <control blocks
are linked together on a last-in, first-out basis. After an exit
handler has been called and returns control, the control block is
removed from the list., Exit control blocks can also be removed prior
to image exit with the Cancel Exit Handler ($CANEXH) system service.

Exit handlers can also be declared from system routines executing 1in
supervisor or executive modes. These exit handlers are also linked
together, and receive control after exit handlers declared from user
mode have been executed.

Figure 7-3 shows an example of an exit handling routine.

PROCESS CONTROL SERVICES

EXITBLOCN%" FEXIT CONTROL RLOCK
+LLONG 0 FOYSTEM USES THIS FOR FOINTER
+ANDRESS EXITRTN FANDRESS OF EXIT HANDLER
+LLONG 1 FNUMBER OF ARGS FOR HANDLER
JADDRESS STATUS FALNDRESS TO RECEIVE STATUS CODE
STATUS? . BLKIL 1 FSTATUS CONE FROM $EXTT
+
+ENTRY PEGASUSy "MaIR2yR3: (2} FENTRY MASK FOR FEGASUS
$DCLEXH..S DESRLK=EXITRL.OCK FRNECLARE EXIT HANDLER
BSEW ERROR
RET FEND OF MAIN ROUTINE
EXTTRTN? FEXIT HANDLER
(3) +WORD “MER2 SENTRY MASK
CMPI. STATUS y #6564 .NORMAL. FNORMAL, EXTT?
REQI. 10% SYESy FINISH
. sNOy CLEAN UP
1042 RET §FINLISHED

Figure 7-3 Example of an Exit Handler

Notes on Figure 7-3:

@ EXITBLOCK is the exit control block for the exit handler
EXITRTN. The third 1longword indicates the number of
arguments to be passed. In this example, only one argument
is passed, the address of a longword for the system to store
the return status code. This argument must be provided in an
exit control block.

@ The SDCLEXH system service call designates the address of the
exit control block, thus declaring EXITRTN as an exit
handler.

@) EXITRTN checks the status tode. If this is a normal exit,
EXITRTN returns control. Otherwise, it handles the error
condition.

7.6.4 Forced Exit

The Force Exit (SFORCEX) system service provides a way for a process
to initiate 1image rundown for another process. For example, the
following call to $FORCEX causes the image executing in the ©process
CYGNUS to exit:

CYGNUS? SASCIN /CYGNUS/ PPROCESS NAME DESCRIPTOR

+
$FORCEX.S FRONAM=CYGNUS

The SFORCEX system service uses the AST mechanism to cause the image
to exit. If the process CYGNUS has disabled AST delivery, the image
cannot be forced to exit until CYGNUS reenables the delivery of ASTs.
AST delivery, and how it is disabled and reenabled, is described in
Chapter 4,

PROCESS CONTROL SERVICES

7.7 PROCESS DELETION

Process deletion completely removes a process from the system.
Deletion occurs as a result of any of the following conditions:

e The command stream contains a LOGOUT command or an
end-of-file.

e An image specified by $SCREPRC exits.

e A process issues a STOP command or executes an image that
calls the Delete Process ($DELPRC) system service.

When the system is called to delete a process as a result of any of
the above conditions, it first locates all subprocesses, searching
hierarchically. Then, beginning with the lowest process in the
hierarchy and completing with the topmost process, each of the
following procedures is performed:

e The image executing in the process is run down. System
resources are released and, if this is a subprocess, quotas
are returned to the creator of the process. The image rundown
that occurs during process deletion 1is the same as that
described in Section 7.6.1. When a process 1is deleted,
however, the rundown releases all system resources, including
those acquired from access modes other than user mode.

® Resource quotas are released to the creating process, 1if the
process being deleted is a subprocess.

e If the creating process specified a termination mailbox, a
message indicating that the process is being deleted is sent
to the mailbox. For detached processes created by the systenm,
the termination message is sent to the system job controller.

e The control region of the process's virtual address space |is
deleted. (The control region consists of memory allocated and
used by the system on behalf of the process.)

e All system-maintained information about the process is
deleted.

Figure 7-4 illustrates the flow of events from image exit through
process deletion.

7.7.1 The Delete Process System Service

A process can delete itself or another process at any time, depending
on the restrictions outlined 1in Section 7.4.1. The Delete Process
(SDELPRC) system service deletes a process. For example, if a process
has created a subprocess named CYGNUS, it can delete CYGNUS as shown
below:

CYGNUSE (ABCID /ZCYGNUS/ SDESCRIFTOR FOR PROCESS NAME
*

+
$OELFRC.LS FRONAM=CYGNUS
Since a subprocess is automatically deleted when the 1image it is
executing terminates (or when the command stream for the command

interpreter reaches end-of-file), you do not normally need to issue
the $DELPRC system service explicitly.

7-16

PROCESS CONTROL SERVICES

Image exit

Any
exit handlers
for user

mode?

Call them, In LIFO order,
using argument list in exit
control block

process using
the command
interpreter?

Call the exit handler

declared by the
command interpreter™®

\

Return to command
interpreter to execute
the next image

)

*This exit handler is declared
from supervisor mode and is
located during the normal
search for exit handlers.

Figure 7-4

Call the Delete Process
(S8DELPRC) system service
to delete the process

Did
creator specify
a termination
mailbox?

Send a termination message
to the mailbox specified by
the process’s creator

Deletion
complete

Image Exit and Process Deletion

the

Force

As an alternative to deleting a process, you can use
(SFORCEX) system service to force the exit of the image executing in a
process. If the SFORCEX system service is wused, any exit handlers
that are declared for the image are executed during the image rundown.
Thus, if the process is using the command interpreter, it 1is not
deleted, but can run another image. Moreover, since the SFORCEX
system service uses the AST mechanism, the exit cannot be performed if
the process being forced to exit has disabled the delivery of ASTs.

PROCESS CONTROL SERVICES

7.7.2 Termination Mailboxes

A termination mailbox provides a process with a way of determining
when, and under what conditions, a process that it has created is
being deleted. The Create Process ($SCREPRC) system service accepts
the unit number of a mailbox as an argument. When the created process
is deleted, the mailbox receives a termination message.

The first word of the termination message contains the symbolic
constant, MSGS$_DELPROC, which indicates that it is a termination
message. The remainder of the message contains system accounting
information used by the job controller, and is in fact identical to
the first part of the accounting record sent to the system accounting
log file. The complete format of the termination message is provided
with the description of the $CREPRC system service in Part II.

The creating process can, 1if necessary, determine the process
identification of the process being deleted from the I/0 status block
posted when the message 1is received in the mailbox. The second
longword of the 1IOSB contains the process identification of the
process that is being deleted.

A termination mailbox cannot be located in memory shared by multiple
processors.

Figure 7-5 illustrates a complete sequence of process creation, with a
termination mailbox. The Create Mailbox and Assign Channel ($CREMBX)
and Queue I/0 Request ($QIO) system services are described in greater
detail in Chapter 6, "Input/Output Services."

EXCHAN?

+ BLKW

EXITRUF$

REUF

+LLONG
+LONG
+BLKE

EXITMSGE « BLKE

MEXTIOSE? BLKW
MBLENS JBLKW
MRBFETIDG JBLKL
LYRAFID?

+LONG

LYREXE?! +ASCID

*

*

PROCESS CONTROL SERVICES

1 $TO HOLD CHANNEL NO. OF MAILROX
FOESCRIFTOR FOR MATLROX INFO
DIRSKLLENGTH FLENGTH OF BUFFER (SEE $GETCHN EXFLANATION)
BRUF FANDRESS OF RUFFER
DTBSK.LLENGTH F RUFFER

ACCHEK.LTERMLEN PRBUFFER FOR MATLEOX MESSAGE
FCBEE $SNDACT EXFLANATION FOR ACCHKLTERMLEN)
1 FQUANWORY 170 STATUS RLOCK
1 FLENGTH OF 170
1 FRECEIVES FID OF PROCESS DELETED

0 SGET FID OF SUBPROCESS

ZLYRASEXE/ FNAME OF ITMAGE FOR SUBFROCESS

© $CREMEX.S CHAN=EXCHAN MAXMSG=4120 s FROMSK =40 » BUF QUO= %240

RERW

BHRW

CREATE MATLROX
ERROR

.....

FEET MAILEROX INFO
ERROR

© $CREFRC..S IMAGE=LYREXE y FIDADR=LYRAF I

RERW
O +010..5

REEBW

L3

*

RET

EXITAST?

1043
2042

+WORD
© CMFPW
BNEQ
CMPW
BNEQ
CMPL
BNEQ
CMPL
REQL.

¢

pex
=3
¢ &+ o —=fie 2

Yeosy™ SCREATE SURFROCESS
MEXUNT=RBRUF+DOIBSW.LUNIT $SPECIFY TERMINATION MALLRBOX
ERROR
CHAN=EXCHAN y FUNC=4T04$%. . REANVRLKy

QIO (READDY TO MATLROX
ASTANR=EXTTAST y TOSR=MEXTOSR y F1I=EXTTMEG y PRe=EACCSKLTERMLEN
ERROR

SCONTINUE EXECUTION

FAST ROUTINE FOR TERMINATION MG

0 SENTRY MASK

MEXTOSE #8654, .NORMAL. $1/70 SUCCESSFULY

204 FRRANCH IF NOT
EXTTMHGHACCHW..MEGTYP y FMEGS . DELFROC §18 IT A TERMINATION MSG?
209 SNOy SOMETHING ELSE
LYRAF Ty MEFID $1S 1T LYRAT

204 FNDy SOMERODY ELSE
LNORMAL, 5 TEL

ETEX NORMALLY®

H

1T ERROR TN LYRA

FAST ROUTINE FINISHED
SHANDLE ALL OTHER CONDITIONS

Figure 7-5 Using a Termination Mailbox

PROCESS CONTROL SERVICES

Notes on Figure 7-5:

The Create Mailbox and Assign Channel ($CREMBX) system
service creates the mailbox, and returns the channel number
at EXCHAN. Note that the maximum message size for a
termination mailbox must be at least 84 (in this example it
is 120).

The Get I/0 Channel Information ($GETCHN) system service
returns information about the mailbox, The information
returned in the buffer can be referred to by the symbolic
offsets defined in the S$DIBDEF macro. These symbolic offsets
are listed under the explanation of the S$GETCHN service 1in
Part II.

The Create Process ($SCREPRC) system service creates a process
to execute the image LYRA.EXE, and returns the process
identification at LYRAPID. The MBXUNT argument refers to the
unit number of the mailbox, obtained from the buffer BBUF by
using the symbolic offset DIBSW_UNIT.

The Queue I/0 Request queues a read request to the mailbox,
specifying an AST service routine to receive control when the
mailbox receives a message and the address of a buffer to
receive the message. The information in the message can be
accessed by the symbolic offsets defined in the $ACCDEF
macro. The process continues executing.

When a message is received in the mailbox, the AST service
routine, EXITAST, receives control. Since this mailbox can
be used for other interprocess communication, the AST routine
checks: 1) for successful completion of the I/O operation by
examining the first word in the I0SB, 2) that the message
received is a termination message by examining the message
type field in the termination message at the offset
ACCSW MSGTYPE, 3) the process identification of the process
that has been deleted by examining the second longword of the
I0sB, and 4) the completion status of the process by
examining the status field in the termination message at the
offset ACCSL_FINALSTS.

In this example, the AST service routine performs special
action when the subprocess is deleted. All other messages or
error conditions cause a branch to the label 20§.

CHAPTER 8

TIMER AND TIME CONVERSION SERVICES

Many applications require the scheduling of program activities based
on clock time. Under VAX/VMS, an image can schedule events for a
specific time of day or after a specified time interval. Timer
services can:

° Schedule the setting of an event flag or the queuing of an
asynchronous system trap (AST) for the current process, or
cancel a pending request that has not yet been honored

. Schedule a wakeup request for a hibernating process, or
cancel a pending wakeup request that has not yet been honored

° Set or recalibrate the current system time, if the caller has
the proper user privileges

The timer services require you to specify the time in a unique 64-bit
format. To work with the time in different formats, you can use time
conversion services to:

. Obtain the current date and time in an ASCII string or in
system format

. Convert an ASCII string into the system time format
'Y Convert a system time value into an ASCII string
° Convert the time from system format to integer values

This chapter describes the system time format and the services that
use it, with examples of scheduling program activities using the timer
services.

8.1 THE SYSTEM TIME FORMAT

VAX/VMS maintains the current date and time (using a 24-hour clock) in
64-bit format. The time value is a binary number in 100-nanosecond
units offset from the system base date and time, which 1is 00:00
o'clock, November 17, 1858 (the Smithsonian base date and time for the
astronomical calendar). All time values passed to system services
must also be in 64-bit format. A time value can be expressed as:

e An absolute time which is a specific date and time of day.
Absolute times are always positive values.

e A delta time which 1is a future offset (number of hours,
minutes, seconds, and so on) from the current time. Delta
times are always expressed as negative values.

TIMER AND TIME CONVERSION SERVICES

You can also specify the address of a time value as 0; in this case
the system will always supply the current date and time by default.

8.2 THE CURRENT DATE AND TIME

The Convert Binary Time to ASCII String ($ASCTIM) system service
converts a time in system format to an ASCII string and returns the
string in a 23-byte buffer. If you want to obtain the current time in
ASCII, code the S$SASCTIM system service as follows:

ATIMENOW: FNESCRIFTOR FOR ASCII TIME
+ LONG 23 FLENGTH OF BUFFER
+L.ONG ATIMENOW+8 FANDRESS OF RUFFER
+BLKR 23 $23 BYTES RETURNED

Ll
*

$ASCTIM..S TIMBUF=ATIMENOW 3$GET CURRENT TIME
The string returned by the service has the format:
dd-mmm-yyyy hh:mm:ss.cc

where dd is the day of the month, mmm 1is the month (a 3-character
alphabetic abbreviation), vyyyy 1is the year, and hh:mm:ss.cc is the
time in hours, minutes, seconds, and hundredths of seconds.

The current time can also be obtained in system format with the Get
Time ($GETTIM) system service, which places the time in a quadword
buffer. For example:

TIME? +RLKQ 1 FBUFFER FOR TIME

SGETTIM..S TIMADR=TIME $GET TIME

This call to S$GETTIM returns the current date and time in system
format in the quadword buffer TIME.

8.3 OBTAINING AN ABSOLUTE TIME IN SYSTEM FORMAT

The converse of the $ASCTIM system service is the Convert ASCII String
to Binary Time (SBINTIM) system service. You provide the service with
the time in the ASCII format shown above, and the service converts the
string to a time wvalue in 64-bit format. You can then use this
returned value as input to a timer scheduling service.

When you code the ASCII string buffer, you can omit any of the fields,
and the service uses the current date or time value for the field.
Thus, if you want a timer request to be date-independent, you could
format the 1input buffer for the $BINTIM service as shown below. The
two hyphens that are normally embedded in the date field must be
included, and at least one blank must precede the time field.

ANDON?! JASCID /-- 12100100,00/ SDESCRIFTOR FOR ASCIT 12 NOON
ENOON? +BLKQ 1 SRUFFER FOR RINARY 12 NOON

$RINTIM.S TIMBUF=ANOONy TIMADR=BNOON §CONVERT TIME

8-2

TIMER AND TIME CONVERSION SERVICES

When the $BINTIM service completes, a 64-bit time wvalue representing
"noon today" is returned in the quadword at BNOON,

8.4 OBTAINING A DELTA TIME IN SYSTEM FORMAT

The S$BINTIM system service also converts ASCII strings to delta time
values to be wused as input to timer services. The buffer for delta
time ASCII strings has the format:

dddd hh:mm:ss.cc

The first field, indicating the number of days, must be specified as 0
if you are coding a "today" delta time.

The following example shows how to use the $BINTIM service to obtain a
delta time in system format.

ATENMING JASCID /0 00:10100.00/ FRNESCRIFPTOR FOR ASCIT TEN MINUTES
BTENMING BLKQ 1 FRUFFER FOR BINARY TEN MINUTES

S$RINTIM.S TIMBUF=ATENMINy TTMADR=RBTENMIN $CONVERT TIME

If you are a VAX~11l MACRO programmer, you can also specify approximate
delta time values at assembly time, using two MACRO .LONG directives
to represent a time value in terms of 100-nanosecond units. The
arithmetic is based on the formula:

1 second =10 million * 100 nanoseconds

For example, the following statement defines a delta time value of 5
seconds:

FIVESECE JLONG ~10X1000%1000%Hy—~1 $FIVE SECONDS

The value 10 million is expressed as 10%1000%1000 for readability.
Note that the delta time value is negative.

If you use this notation, however, you are 1limited to the maximum
number of 100-nanosecond units that can be expressed in a longword.
In terms of time values, this is somewhat more than 7 minutes.

8.5 TIMER REQUESTS

Timer requests made with the Set Timer ($SETIMR) system service are
queued, that 1is, they are ordered for processing according to their
expiration times. The TQELM quota controls the number of entries a
process can have pending in this timer queue.

When you code the $SETIMR system service, you can specify either an
absolute time or a delta time value. Depending on how you want the
request processed, you can specify either or both of the following:

° The number of an event flag to be set when the time expires.
If you do not specify an event flag, the system sets event
flag 0.

® The address of an AST service routine to be executed when the
time expires.

TIMER AND TIME CONVERSION SERVICES

Optionally, you can specify a request identification for the timer
request. You can wuse this identification to cancel the request, if
necessary. The request identification is passed to the AST service
routine, if one 1is specified, as the AST parameter so that the AST
service routine can identify the timer request.

Figure 8-1 shows examples of timer requests using event flags and
ASTs. Event flags' and event flag services are described in more
detail in Chapter 3, "Event Flag Services." ASTs are described in more
detail in Chapter 4, "AST (Asynchronous System Trap) Services."

IExample 1: Setting an Event Flag]

A30SEC? +ABCID /0 00:00:30.00/ FDESCRIFTOR FOR ASCII 30
; SECONDSy DELTA TIME
B3OSEC? JERLKQ 1 FQUATWORD TO HOLD CONVERTED
$ (RINARY) DELTA TIME

*

S$RINTIM..8 TIMBUF=A30SEC, TIMAIR=EI0OSEC §FCONVERT TO RINARY
RSEBY ERROR
@ 4$SETIMR.S EFN=¥4yDAYTIM=RE30SEC $SET TIME TO WAILT
RSEW ERROR
@ HWAITFR.S EFN=#4 FWALT 30 SECONDS
RSEW ERROR

L
*

*
Notes on Example 1:

@ The call to $SETIMR requests that event flag 4 be set in 30
seconds (expressed in the quadword B30SEC).

@® The Wait for Single Event Flag (SWAITFR) system service
places the process in a wait state until the event flag is
set. When the timer expires, the flag is set and the process
continues execution.

Figure 8-1 Timer Requests

TIMER AND TIME CONVERSION SERVICES

rExample 2: Using an AST Service RoutineJ

ANOON ¢
BNOON$

JASCID /e 12300200.00/
+BLRQ 1

+

@ $EINTIM.S TIMBUF=ANOONs TIMADR=ENOON
ESEW ERROR

@O HSETIMR.S

SSET TIMER FOR NOON»

FROESCRIFTOR FOR ASCIT 12 NOON
$TO HOLD CONVERTED

(RINARY) NOON

$CONVERT TO BINARY

DAYTIM=RNOONy ASTADR=ASTEERVy REQIDT=412
SFECIFY AST ROUTINEY

JPASS REQUEST 1.0, OF 12 AS AST PARAMETER.
ESEW ERROR
RET

ASTSERY S (3)
JIORD 0 SENTRY MASK FOR AST ROUTINE
CMFL #12,4CAF) 318 THIS A "NOON' AST REQUEST?
ENEQ 10% SIF NOT» HANDLE OTHER TYFE($)

. SHANDLE *NOON® AST REQUEST

RET

10%2 ' SHANDLE OTHER TYPES OF REQUESTS
RET

Notes on Example 2:

©@ The call to $BINTIM converts the

ASCII

string representing

12:00 noon to system format. The value returned in BNOON is
used as input to the S$SETIMR system service,

@® The AST routine specified in the $SETIMR request will be
called when the timer expires, that is, at 12:00 noon. The

REQIDT argument identifies the timer request.
as the AST parameter and is stored at offset 4 in
4.4,
process continues execution;
it is interrupted by the delivery of the AST.
day is past noon, the timer

is passed
the argument
Routine.") The
expires,
that if the current
expires immediately.

list, See Section

time of

© This AST service routine checks the parameter passed by
in this example, whether it must
or another
(identified by a different REQIDT value).
the

REQIDT argument and checks,

service the 12:00 noon timer
request
AST service routine completes,
execution at the point of interruption.

request

Figure 8-1 (Cont.)

(This argument

AST Service
when the timer
Note

"The

the

type of
When the

process continues

Timer Requests

TIMER AND TIME CONVERSION SERVICES

8.5.1 Canceling Timer Requests

Cancel Timer Request ($CANTIM) system service cancels timer requests
that have not yet been processed. The entries are removed from the
timer queue. Cancellation is based on the request identification
given in the timer request, For example, to cancel the request
illustrated in Example 2 of Figure 8-1, you would code:

$CANTIM.S REQIDT=#12

If you assign the same identification to more than one timer request,
all requests with that identification are canceled. 1If you do not
specify the REQIDT argument, all your requests are canceled.

8.6 SCHEDULED WAKEUPS

Example 1 in Figure 8-1 showed a process placing itself in a wait
state for a period of time using the $SETIMR and $WAITFR services.,
Another way for a process to make itself inactive is by hibernating.
A process hibernates by issuing the Hibernate ($HIBER) system service;
hibernation is reversed by a wakeup request, which can be effected
immediately with the S$WAKE system service, or scheduled with the
Schedule Wakeup ($SCHDWK) system service.

The following example shows a process scheduling a wakeup for itself
prior to hibernating:

ATENSEC: ASCID /0 002:00110.00/ SFDESCRIFTOR FOR 10-SECOND WAIT TIME
RTENSECS JBLKQ 1 §TO HOLD BINARY TEN-SECOND VALUE

+

S$RINTIM.S TIMBUF=ATENSEC, TIMADR=RTENSEC FCONVERT TIME
$HCHIWK..S DAYTIM=BTENSEC FSCHEDULE WAKE
$HIRER..S FOLEEF TEN SECONDS

Hibernation and wakeup are described in more detail in Chapter 7,
"Process Control Services." Note that a suitably privileged process
can wake or schedule a wakeup for another process; thus, cooperating
processes can synchronize activity wusing hibernation and scheduled
wakeups. Moreover, when you code a $SCHDWK system service, you can
specify that the wakeup request be repeated at fixed time intervals.

8.6.1 Canceling Scheduled Wakeups

Scheduled wakeup requests that are pending but have not vyet been
processed can be canceled with the Cancel Wakeup ($SCANWAK) system
service.

The following example shows the scheduling of wakeup requests for a
process, CYGNUS, and the subsequent cancellation of the wakeups. The
$SCHDWK system service in this example specifies a delta time of one
minute and an interval time of one minute; the wakeup is repeated
every minute until the requests are canceled.

TIMER AND TIME CONVERSION SERVICES

CYGNUS: .ASCIND /CYGNUS/ FOESCRIFTOR FOR PROCESS NAME
ONE.MIN: . ASCID /0 00101200.00/ FUESCRIFTOR FOR 1 MIN (DELTA)
INTERVAL?: .QUAD 1L 8 BYTES TO HOLD RINARY 1 MIN

*

*

SRINTIM.S TIMBUF=ONE.MINy TIMADR=INTERVAL $CONVERT TO RINARY

$EHOHIWK..G PRONAM=CYGNUS » DAY T IM=INTERVAL » REFT IM=INTERVAL.
FWARE UF EVERY MINUTE

*

$CANWAK..S FRONAM=CYGNUS 3 CANCEL WARKE-UFS

*

8.7 NUMERIC AND ASCII TIME

The Convert Binary Time to Numeric Time ($NUMTIM) system service
converts a time in the system format into binary integer values. The
service returns each of the components of the time (year, month, day,
hour, and so on) into a separate word of a seven-word buffer. The
$NUMTIM system service and the format of the information returned are
described in Part II.

When you need the time formatted into ASCII for inclusion in an output
string, you <can use the $ASCTIM system service. The $ASCTIM service
accepts as an argument the address of a quadword that contains the
time in system format and returns the date and time in ASCII format.

If you want to include the date and time in a character string that
contains additional data, you can format the output string with the
Formatted ASCII Output ($FAO) system service. The $FAO system service
converts binary wvalues to ASCII representations, and substitutes the
results in character strings according to directives supplied 1in an
input control string. Among these directives are I!%T and !%D, which
convert a quadword time value to an ASCII string and substitute the
result in an output string. For examples of how to do this, see the
discussion of $FAO in Part II.

8.8 SETTING THE SYSTEM TIME

The Set System Time ($SSETIME) service allows a user with the operator
(OPER) and 1logical I/0 (LOG_IO) privileges to set the current system
time. You can specify a new system time (using the TIMADR argument),
or you can recalibrate the current system time using the processor's
hardware time-of-year clock (omitting the TIMADR argument). If vyou
specify a time, it must be an absolute time value; a delta time
(negative) value is invalid.

The system time is set whenever the system 1is booted. There is
normally no need to change the system time between system boots;
however, in certain circumstances you may wish to change the system
time without rebooting. For example, you might specify a new system
time to synchronize two processors, or to adjust for changes between
standard time and daylight savings time. You might wish to

TIMER AND TIME CONVERSION SERVICES

recalibrate the time to ensure that the system time matches the
hardware clock time (the hardware clock is more accurate than the
system clock).

The $SETIME service is called automatically by the SET TIME operator
command.

Any change to the system time does not change the interval remaining
for existing time requests., This is true for both absolute and delta
time requests. The following example shows the effect of changing the
system time on an existing timer request. 1In the example, a wakeup
request scheduled for 08:30 is automatically changed to 09:30 when the
system time is changed from 08:00 to 09:00.

WAKEUP? JASCID /-- 08130:100.00/ $8130 TODAY
NEWTIM! .ASCIO /-- 09:00:00.00/ #9 0°CLOCK TODAY
RINTIM? .BLKQ 1 FTO HOLI CONVERTED RBINARY TIMES

L]

L]

o ASSUME CURRENT SYSTEM TIME I8 08100100

L3

$RINTIM..S TIMBUF=WAKEUFy- $CONVERT WAKEUF TIME TD BINARY
TIMADR=RINTIM

BSEW ERROR

$SCHIWK.LES DAY TIM=RINTIM FSCHEDULE WARKEURF FOR 8330

REERW ERROR

$RINTIM..S TIMBUF=NEWTIMy— FCONVERT NEW SYSTEM TIME TO
TIMADR=RINTIM H RINARY

BERW ERROR

$HETIME..S TIMADR=RINTIM $CHANGE SYSTEM TIME TO 09:00

BRERW ERROR

$HIRBER..S FHIRERNATE TILL 9330 (30 MINUTES)

*

*

+

SINCE THE INTERVAL BETWEEN THE CURRENT TIME AND THE WAKEUF
TIME WAS 30 MINUTES WHEN WE MADE THE $SETIME REQUEST
CHANGING THE SYSTEM TIME TO 9300 CAUSES THE WAKEUF TIME

TO BE CHANGED TO 9:30.

wr w> €y Wy

CHAPTER 9

CONDITION-HANDLING SERVICES

A condition handler is a procedure that 1is given control when an
exception occurs. An exception is an event that is detected by the
hardware or software and that interrupts the execution of an image,.
Examples of exceptions include arithmetic overflow or underflow and
reserved opcode or operand faults.

If you determine that a program needs to be informed of particular
exceptions so that it can take corrective action, you can code and
specify a condition handler. This condition handler, which will
receive control when any exception occurs, can test for specific
exceptions.

If an exception occurs and you have not specified a condition handler,
the default condition handler established by the command interpreter
is given control, 1If the exception is a fatal error, the default
condition handler issues a descriptive message and performs an exit on
behalf of the image that incurred the exception.

This chapter describes how the condition-handling mechanism in VAX/VMS
works and explains how to write a condition handler,.

9.1 TYPES OF EXCEPTION
Exceptions can be generated by:
e Hardware
o Software
) System service failures

Hardware-generated exceptions always result in conditions that require
special action if program execution is to continue.

Software-generated exceptions result in error or warning conditions.
These conditions and their messages are documented in the VAX/VMS
System Messages and Recovery Procedures Manual or, for certain
software routines, in the manual associated with their routine. (For
example, linker error messages appear in the VAX-1ll Linker Reference
Manual.)

System service failure exceptions occur when an error or severe error
status is returned from a call to a system service. You can choose to
handle error returns from system services by using the condition
handling mechanism rather than other error checking methods. If you
want to handle exceptions generated by service failures, you must

CONDITION-HANDLING SERVICES

enable system service failure exception mode with the Set System
Service Failure Mode ($SETSFM) system service. For example:

$SETSFM..S ENBFL.G=%#1

System service failure exception mode is initially disabled, and may
be enabled or disabled at any time during the execution of an image.
For additional information on system service failure exception mode,
see Section 2.1.5.4 (MACRO programmers) or Section 2.2.2.3 (high-level
language programmers).

Table 9-1 provides a summary of common conditions caused by
exceptions.

Table 9-1
Summary of Exception Conditions

Condition
Name/Type Explanation Additional Arguments
SS$_ACCVIO Access violation 1. Reason for access violation. This is a
(Fault) mask with the format:
Bit 0 = type of access violation
0 = page tabhle entry protection
code did not permit intended
access
1 = POLR, P1LR, or SLR 1length
violation
Bit 1 = page table entry reference
0 = specified wvirtual address
not accessible
1 = associated page table entry
not accessible
Bit 2 = intended access
0 = read
1 = modify
2, Virtual address to which access was
attempted
SS$_ARTRES Reserved arithmetic trap None
(Trap)
S5$_ASTFLT Stack invalid during 1. Stack pointer value when fault occurred
(Fault) attempt to deliver an 2. AST parameter of failed AST
AST 3. Program counter (PC) at AST delivery
interrupt
4, Processor status longword (PSL) at AST
delivery interruptl
5. Program counter (PC) to which AST would
have been deliveredl
A. Processor status longword (PSL) to which
AST would have been deliveredl
§S$_BREAK Breakpoint instruction None.
(Fault) encountered
55$_CMODSUPR Change mode to supervisor Change mode code. The possible values are
. (Trap) instruction encountered? ~32748 through 32767.
58$_CMODUSER Change mode to user Change mode code. The possible values are
(Trap) instruction encountered?2 -32768 through 327A7.

1 The PC and PSL normally included in the signal array are not included in this arqument list.
The stack pointer of the access mode receiving this exception is reset to its initial value.

2 If a change mode handler has been declared for user or supervisor modes with the Declare
Change Mode or Compatibility Mode Handler ($DCLCMH) system service, that routine receives
control when the associated trap occurs,

CONDITION-HANDLING SERVICES

Table 9-1(Cont.,)
Summary of Exceptional Conditions

Condition
Name/Type Explanation Additional Arguments
SS$_COMPAT Compatibility mode Type of compatihbility exception. The possible
{Fault) exception., This exception values are:
condition can only occur
when executing in 0 = Reserved instruction execution
compatibility mode.3 1 = BPT instruction executed
2 = IOT instruction executed
3 = EMT instruction executed
4 = TRAP instruction executed
5 = Illegal instruction executed
6 = 0dd address fault
7 = TBIT trap
SS$_DECOVF Decimal overflow None
(Trap)
S§8$_FLTDIV Floating/decimal divide by zero None
(Trap)
S§8$_FLTDIV_F Floating divide by zero None
(Fault) fault
S§S$_FLTOVF Floating overflow None
(Trap)
SS8$_FLTOVF_F Floating overflow fault None
(FaultY
§8$_FLTUND Floating underflow None
(Trap)
SS$_FLTUND_F Floating underflow fault None
(Fault)
SS$_INTDIV Integer divide by zero None
(Trap)
S5$_INTOVF Integer overflow None
(Trap)
5_OPCCUS Opcode reserved to customer None
(Fault) fault
SS$_OPCDEC Opcode reserved to Digital None
(Fault) fault

SS$_PAGRDERR

Read error occurred during

l. Translation not valid reason. This is

(Fault) an attempt to read a faulted a mask with the format:
page from disk
Bit 0 = 0
Bit 1 = page table entry reference
0 = specified virtual address
not valiad
1 = associated page table entry
not valid
Bit 2 = intended access
0 = read
1 = modify
SS_RADRMOD Attempt to use a reserved None
(Fault) addressing mode
§5$_ROPRAND Attempt to use a reserved None
(Fault) operand
SS$_SSFAIL System service failure (when Status return from system service (R0O)
(Fault) system service failure (The same value is in RO of the
exception mode is enabled) mechanism array)
SS$_SUBRNG Subscript range trap None
SS$_TBIT Trace bit is pending following None
(Fault) an instruction
3 If a go@patibility mode handler has been declared with the DNeclare Change Mode or
Compatibility Mode Handler ($DCLCMH) system service, that routine receives control when this

fault occurs.

CONDITION-HANDLING SERVICES

9.1.1 Change Mode and Compatibility Mode Handlers

There are two types of hardware exception that can be handled in a

special way, bypassing the normal condition-handling mechanism
described in this chapter. These are:

e Traps caused by change mode to user or change mode to
supervisor instructions

e Compatibility mode faults

You can use the Declare Change Mode or Compatibility Mode Handler
(SDCLCMH) system service to establish procedures to receive control
when one of these conditions occurs. The $DCLCMH system service is
described in Part II.

9.2 HOW TO SPECIFY CONDITION HANDLERS

You can establish condition handlers to receive control in the event
of an exception in two ways:

1. By specifying the address of the entry mask of a condition
handler in the first longword of a procedure call frame

2. By establishing exception vectors with the Set Exception
Vector ($SETEXV) system service

The first of these methods 1is the most common way to specify a
condition handler for a particular image. It is also the most
efficient way in terms of declaration. The VAX-1ll1 MACRO programmer
can use a single move address instruction to place the address of the
condition handler in the longword pointed to by the current frame
pointer (FP). For example:

MOVAL HANDLER, (FP)

The high-level language programmer can call the common run-time
library routine LIBSESTABLISH (see the VAX-1ll Run-Time Library
Reference Manual); however, some languages provide access to
condition-handling as part of the language.

Each procedure on the call stack can declare a condition handler.

The S$SETEXV system service allows vyou to specify addresses for a
primary exception vector, a secondary exception vector, and a last
chance exception vector. Vectors may be specified for each access
mode. The primary exception vector is reserved for the debugger.

An address of 0 in the first longword of a procedure call frame or in
an exception vector indicates that no condition handler exists for
that call frame or vector.

CONDITION-HANDLING SERVICES

9.3 THE EXCEPTION DISPATCHER

When an exception occurs, control is passed to the operating system's
exception dispatching routine. The exception dispatcher searches for
a condition-handling routine using the following search order:

1. The primary exception vector for the access mode at which the
program was executing when the exception occurred.

2. The secondary exception vector for the access mode at which
the program was executing when the exception occurred.

3. The condition handler address specified in the procedure call
stack of the access mode at which the program was executing
when the exception occurred. Call frames on the stack are
scanned backwards, using the saved frame pointer in each call
frame to refer to the previous call frame,

4. The last chance exception vector for the access mode at which
the program was executing when the exception occurred.

The search 1is terminated when the dispatcher finds a condition
handler. If the dispatcher cannot find a user-specified condition
handler, it calls the default condition handler established by the
command interpreter, if the 1image was initiated by the command
interpreter. The default handler 1issues a message and either
continues program execution or performs an exit on behalf of the
process, depending on whether the condition was a warning or an error
condition, respectively.

The search can also be terminated when the dispatcher detects a saved
frame pointer containing a 0 (that 1is, it reaches the end of the
stack), or when an access violation occurs. In these cases, the
system performs an exit for the process, with the return status code
SS$_NOHANDLER indicating "absence of condition handler" (for a 0 frame
pointer) or SS$ ACCVIO indicating "bad stack" (for an access
violation). -

Figure 9-1 illustrates the exception dispatcher's search of the call
stack for a condition handler.

CONDITION-HANDLING SERVICES

0
FP
. Exception
Occurs
Procedure
Cc
0
FP
Procedure
B
|
HANDLERA |
FP
Condition
Procedure Handler Found
A

Figure 9-1 Search of Stack for Condition Handler

Notes on Figure 9-1:

1.

The illustration of the call stack indicates the calling
sequence: Procedure A <called Procedure B, and Procedure B
called Procedure C. Procedure A established a condition
handler.

An exception occurs while Procedure C 1is executing. The
exception dispatcher searches for a condition handler.

After checking for a condition handler declared 1in the
exception vectors (assume that none has been specified for
this process), the dispatcher looks at the first longword of
Procedure C's call frame. A value of 0 indicates that no
condition handler has been specified. The dispatcher locates
the call frame for Procedure B by using the frame pointer
(FP) in Procedure C's call frame. Again, it finds no
condition handler, and locates Procedure A's call frame.

The dispatcher locates and gives control to HANDLERA.

CONDITION-HANDLING SERVICES

9.4 THE ARGUMENT LIST PASSED TO A CONDITION HANDLER

When the dispatcher finds a condition handler, it passes control to it
using a CALLG instruction., The argument list passed to the condition
handler is constructed on the stack and consists of the addresses of
two argument arrays, as illustrated in Figure 9-2; these arguments
are described in detail in the next two subsections (9.4.1 and 9.4.2).

You can define symbolic names to refer to these

arguments
$CHFDEF macro instruction.

The symbolic names are:

using the

Symbolic Offset

CHFSL_SIGARGLST
CHFSL_MCHARGLST

CHFSL_SIG_ARGS
CHFSL_SIG_NAME
CHF$L_SIG_ARG1

CHFSL_MCH_ARGS

CHF$L_MCH_FRAME
CHF$L_MCH_DEPTH
CHF$L_MCH_SAVRO
CHF$L_MCH_SAVR1

Value

Address of signal array
Address of mechanism array

Number of signal arguments
Condition name
First signal-specific argument

Number of mechanism arguments
Establisher frame address
Frame depth of establisher
Saved register 0

Saved register 1

9.4.1 Signal Array Arguments
The signal array contains values describing the condition, These
values are:

1. Condition name -- The symbolic value assigned to the specific
condition. The possible conditions and their symbolic
definitions are listed in Table 9-1.

2. Additional arguments -- Specific information relating to the

condition. Table 9-1 also
provided with each condition.

shows the additional arguments

3. PC -- The program counter at the time of the exception,
Depending on the type of exception (fault or trap), this can
be the address of the’ instruction that caused the exception
(for a fault), or of the following instruction (for a trap).

4, PSL -- The processor status
exception.

longword at the time of the

CONDITION-HANDLING SERVICES

Signal Array

condition name

first signal argument

Argument List A additional arguments for L

. condition handler, W
2 7 if any
address of signal array PC
address of mechanism array PSL

Mechanism Array

establisher frame

depth

RO

R1

You can define symbolic names to refer to these arguments using the
S$CHFDEF macro instruction. The symbolic names are:

Symbolic Offset Value
CHF$L_SIGARGLST Address of signal array
CHF$L_MCHARGLST Address of mechanism array
CHF$L_SIG_ARGS Number of signal arguments
CHF$L_SIG__NAME Condition name
CHF$L_SIG_ARG1 First signal-specific argument
CHF$L_MCH_ARGS Number of mechanism arguments
CHF$L_MCH_FRAME Establisher frame address
CHF$L_-MCH_DEPTH Frame depth of establisher
CHF$L_MCH_SAVRO Saved register 0
CHF$L_MCH_SAVR1 Saved register 1

Figure 9-2 Argument List and Arrays Passed to Condition Handler

CONDITION-HANDLING SERVICES

9.4.2 Mechanism Array Arguments

The mechanism array describes the context in which the exception
occurred. The arguments supplied are:

1. Establisher frame -- The frame pointer (FP) register contents
of the call frame that established the condition handler.
This is the address of the longword containing the condition
handler address. For example, if the call stack is as shown
earlier in Figure 9-1, this argument points to the call frame
for Procedure A.

This value can be used to display local variables in the
procedure that established the condition handler, if the
variables are at known offsets from the FP of the procedure.

2. Depth -- The frame number of the procedure that established
the condition handler, relative to the frame of the procedure
that incurred the exception. The depth is determined as

follows:
Depth Meaning

-3 Condition handler was established in the last
chance exception vector

-2 Condition handler was established in the primary
exception vector

-1 Condition handler was established in the secondary
exception vector

0 Condition handler was established by the frame
that was active when the exception occurred

1 Condition handler was established by the caller of
the frame that was active when the exception
occurred

2 Condition handler was established by the caller of

the caller of the frame that was active when the
exception occurred

. and so on.

For example, if the call stack is as shown earlier in Figure

9-1, the depth argument passed to HANDLERA would have a value
of 2.

The condition handler can use this argument to determine
whether it wants to handle the condition. For example, the
handler may not want to handle the condition if the exception
that caused the condition did not occur in the establisher

frame.
3. RO -- The contents of register 0 when the exception occurred.
4. R1 -- The contents of register 1 when the exception occurred.

CONDITION-HANDLING SERVICES

9.5 COURSES OF ACTION FOR THE CONDITION HANDLER

After the condition-handling routine determines the nature of the
exception, it can take one of the following courses of action:

1.

Continue

The condition handler may or may not be able to fix the
problem but the program can continue execution. The handler
places the return status value SS$ CONTINUE in RO and issues
a RET instruction to return control to the dispatcher. The
exception dispatcher returns control to the procedure that
incurred the exception, at the instruction that caused the
exception. If the exception was a fault, the instruction
that caused it is reexecuted; 1if the exception was a trap,
control is returned at the instruction following the one that
caused it. (In the case of a trap, the instruction causing
the trap can sometimes be reexecuted by subtracting the
length of the instruction from the PC in the signal array.)

Resignal

The handler cannot fix the problem, or this condition is one
that it does not handle. It places the return status value
SS$ RESIGNAL in RO and issues a RET instruction to return
control to the exception dispatcher. The dispatcher resumes
its search for a condition handler. If it finds another
condition handler, it passes control to that routine.

Unwind

The condition handler cannot fix the problem, and execution
cannot continue using the current flow. The handler issues
the Unwind Call Stack (SUNWIND) system service to unwind the
call stack. Call frames may then be removed from the stack
and the flow of execution modified, depending on the
arguments to the SUNWIND service.

Examples of these three situations are shown in the next two sections.

9.6 EXAMPLE OF CONDITION-HANDLING ROUTINES CONTINUING AND RESIGNALING

Figure 9-3 shows two procedures, A and B, that have declared condition

handlers.

The notes describe the sequence of events that would occur

if a call to a system service failed during the execution of Procedure

B.

CONDITION-HANDLING SERVICES

+ENTRY FGMA»OQ FENTRY MASK FOR FROCEDURE A
© Hoval. HANDLERAY (FF) FRECLARE CONDITION HANDLER
$SETEFM..S ENBFLG=#1 FENARLE SSFATL. EXCEPTIONS

AOcaLlLs ARGLIST » FEME sCALL PROCEDURE &

+

+

HANDLERA @

+ WORD “MIR2 PRI R4 FENTRY MASK OF MHANDLERA
MOVI. CHF $1...8TGARGLST (AF) v R4 FGEYT AIDR OF SIGNAL ARGS
CMFL. #56$.G8FALL y CHF $L..S TG NAME (R4)
FOYSTEM SERVICE FAILURE?
RNEQ 10% FNO - RESIGNAL
0 - FHANDLE S8FATL EXCEPTION

*

MOVZWL #584.CONTINUE,RO $8IGNAL TO CONTINUE

RET FRETURN TO EXCEFTION DISFATCHER
1043 MOVZUWIL. #5854 RESTGNAL RO SSIGNAL TO RESIGNAL

RET FRETURN TO DISPATCHER
+ENTRY FGMEy “MIR2 PRIy R4 FENTRY MASK OF PROCEDURE R

© rMoval. HANDLERYy (FF) SDECLARE CONDITION HANDLER

*

. - Bustem service failure ocours@
i o)
HANDILERE : @
+WORD "MOIR2yRIvRA: SENTRY MASK OF HANDLERR
MOWL.. CHF 6L...STGARGLST (AF) yR4 FGET ADDR OF SIGNAL ARGE
ML FGEG.BREAK y CHF 6L S TG NAME (R4) SBREARKFOINT FalLT?
BNEQ 10% FNOy RESTGNAL
. FYESy HANDLE EXCEFTION

+

MOVZUWL. #8S84.CONTINUE RO SSIGNAL TO CONTINUE

RET PRETURN TO EXCEFTION DISFATCHER
10$3@ MOVZWL #SS$.RESTOGNALyRO $STGNAL TO RESIGNAL

RET SRETURN TO DISPFATCHER

Figure 9-3 Example of Condition Handling Routines

Notes on Figure 9-3:

© vrprocedure A executes and establishes condition handler
HANDLERA., HANDLERA is set up to respond to exceptions caused
by failures in system service calls,
During its execution, Procedure A calls Procedure B.

Procedure B establishes condition handler HANDLERB, HANDLERB
is set up to respond to breakpoint faults.

While Procedure B is executing, an exception occurs caused by
a system service failure. :

® 0 o0

The exception dispatcher searches the exception vectors for a
condition handler (assume there are none defined), and then
searches the call stack. HANDLERB 1is «called with the
condition SS$_SSFAIL.

9-11

CONDITION-HANDLING SERVICES

6 Since HANDLERB only handles breakpoint faults, it places the
return value SS$_RESIGNAL in RO and returns control to the
exception dispatcher.

The exception dispatcher resumes its search for a condition
handler and calls HANDLERA.

© HANDLERA handles the system service failure exception,
corrects the condition, places the return value SS$_CONTINUE
in RO, and returns control to the exception dispatcher.

G) The dispatcher returns control to Procedure B, and execution
of Procedure B resumes at the instruction following the
system service failure.

9.7 UNWINDING THE CALL STACK

The third course of action a condition handler can take is to unwind
the procedure call stack. The unwind operation is complex, and should
only be used when control must be restored to an earlier procedure in
the calling sequence, Moreover, use of the SUNWIND system service
requires the calling condition handler to be aware of the calling
sequence and of the exact point to which control is to return.

The SUNWIND system service accepts two optional arguments:

1. The depth to which the unwind is to occur. If the depth is
1, the <call stack is unwound to the caller of the procedure
that incurred the exception. If the depth is 2, the wunwind
is to the caller's caller, and so on.

2. The address of a location to receive control when the unwind
is complete, that is, a return PC to replace the current PC
in the call frame of the procedure that will receive control
when all specified frames have been removed from the stack.

If no arguments are supplied to the SUNWIND service, the unwind is
performed to the caller of the procedure that established the
condition handler that is issuing the SUNWIND service. Control is
returned to the address specified in the return PC for that procedure.
Note that this is the default and normal case for unwinding.

Figure 9-4 illustrates an unwind situation and describes some of the
possible results.,

During the actual unwinding of the call stack, the wunwind routine
examines each frame in the call stack to see if a condition handler
has been declared. If a handler has been declared, the unwind routine
calls the handler with the status value SS$ UNWIND (indicating that
the call stack is being unwound) in the condition name argument of the
signal array. When a condition handler is called with this status
value, it «can perform any procedure-specific cleanup operations
required. After the handler returns, the call frame is removed from
the stack.

Thus, in Figure 9-4, HANDLERB may be called a second time, during the
unwind operation. Note that HANDLERB does not have to be able to
specifically interpret the SS$ UNWIND status value; the RET
instruction merely returns control to the unwind procedure, which does
not check any status values.

CONDITION~-HANDLING SERVICES

0
FP
Procedure
D
A
0 -
FP
Procedure
C
HANDLERB
FP
Procedure
B
/
0
FP
Procedure
A

Figure 9-4 Unwinding the Call Stack

Notes on Figure 9-4:

lo

The procedure <call stack is as shown. Assume that no
exception vectors are declared for the process and that the
exception occurs during the execution of Procedure D.

Since neither Procedure D nor Procedure C has established a
condition handler, HANDLERB receives control.

If HANDLERB 1issues the SUNWIND system service with no
arguments, the call frames for B, C, and D are removed from
the stack (along with the call frame for HANDLERB itself),
and control returns to Procedure A. Procedure A receives
control at the point following its call to Procedure B.

If HANDLERB issues the $UNWIND system service specifying a
depth of 2, call frames for C and D are removed, and control
returns to Procedure B.

CONDITION-HANDLING SERVICES

9.8 MULTIPLE EXCEPTIONS

It is possible for a second exception to occur while a condition
handler or a procedure that it has called is still executing. In this
case, when the exception dispatcher searches for a condition handler,
it skips the frames that were searched to locate the first handler.

The search for a second handler terminates in the same manner as the
initial search, as described in Section 9.3.

If the SUNWIND system service is issued by the second active condition
handler, the depth of the unwind is determined according to the same
rules followed in the exception dispatcher's search of the stack: all
frames that were searched for the first condition handler are skipped.

If an exception occurs during the execution of a handler established
in the primary or secondary exception vector, that handler must handle
the additional condition.

CHAPTER 10

MEMORY MANAGEMENT SERVICES

The VAX/VMS memory management routines map and control the
relationship between physical memory and a process's virtual address
space. These activities are, for the most part, transparent to you as
a user and to your programs. However, you can in some cases make a
program more efficient by explicitly controlling 1its virtual memory
usage. Memory management services allow you to:

® Increase or decrease the virtual address space available in a
process's program or control region

e Control the process's working set size and the exchange of
pages between physical memory and the paging device

o Define disk files containing data or shareable images and map
the file into the process's virtual address space

This chapter discusses the services that provide these capabilities.,
However, before vyou use any of these services, you should have an
understanding of the VAX-11l memory structure and memory mahagement
routines. Where pertinent, virtual memory concepts related to the use
of particular services are discussed in this. chapter. For more

background information, see the VAX/VMS Summary Description and
Glossary.

10.1 INCREASING VIRTUAL ADDRESS SPACE
The virtual address space of a process is divided into two regions:

1. The program region (P0), which contains the 1image <currently
being executed.

2. The control region (Pl), which contains the information
maintained by the system on behalf of the process. It also
contains the user stack, which expands toward the
lower-addressed end of the control region.

Figure 10-1 illustrates the layout of a process's virtual memory. The
initial size of a process's virtual address space depends on the size
of the image being executed.

To facilitate memory protection and mapping, the virtual address space
is subdivided into 512-byte wunits called pages. Using memory
mahagement services, a process can add a specified number of pages to
the end of either the program region or the control region. Adding
pages to the program region provides the process with additional space
for 1image execution, for example, for the dynamic creation of tables
or data areas. Adding pages to the control region increases the size

10-1

MEMORY MANAGEMENT SERVICES

of the user stack. (The user stack can also be expanded when the
image is linked, by the use of the STACK= option in a 1linker options
file.)

The maximum size to which a process can increase its address space is
controlled by an entry in the system authorization file for the user.

Virtual
Address
00000000 |
PROGRAM REGION |
(PO) direction of
gmwm
length— — — — — — L — —
3FFFFFFF
40000000
CONTROL REGION
(P1)
length— — — — — — ‘ ——
|
1
direction of
growth
7FFFFFFF !

Figure 10-1 Layout of Process Virtual Address Space

10.2 INCREASING AND DECREASING VIRTUAL ADDRESS SPACE

The Expand Program/Control Region ($SEXPREG) system service adds pages
to the end of either the program or control region, and optionally
returns the range of virtual addresses of the new pages. For example,
if you want to add four pages to a process's program region, you can
code a call to the SEXPREG system service as follows:

REGSFACES
« BLKL. & §2 LONGWORDS TO HOLD START AND END OF NEW PAGES

SEXPREG.S PAGONT=E4y RETADR=RBEGESFACE » REGTON=#0 SGET 4 FAGES

To add the same number of pages to the control region, you would
specify REGION=#1.

10-2

MEMORY MANAGEMENT SERVICES

When pages that have been added at the end of a region are no longer
needed, they can be deleted with the Contract Program/Control Region
(SCNTREG) system service. As for the SEXPREG service, you code the
number of pages you want deleted and the region:

SONTREG..S FAGOUNT=%4y REGTON=%0

Note that the REGION argument for both the SEXPREG and S$CNTREG
services 1is optional; if not specified, the pages are added to or
deleted from the program region by default.

The SEXPREG and $CNTREG services can only add or delete pages at the
end of a particular region. When you need to add or delete pages that
are not at the end of these regions, you can use the Create Virtual
Address Space ($SCRETVA) and Delete Virtual Address Space (SDELTVA)
system services. For example, if you have used the SEXPREG service
twice to add pages to the program region, and want to delete the first
range of pages but not the second, you could use the S$DELTVA system
service as shown in the following sequence:

BEGSFACEAS o BLKL 2 2 LONGWORDS TO HOLD START + END OF 18T AREA

REGSFACERS o BLKL 2 $2 LONGWORDS TO HOLD START + ENIY OF 2NIN AREA
¢ /

$EXPREG.S FAGONT=#4y RETADR=REGSEFACEAy REGION=%0 $FOUR PAGES

BSERW ERROR

+

SEXFREG..S PAGONT=#3y RETADR=REGSFACERy REGTON=#0 § THREE MORE
BSEW ERROR

L4

SHELTVALS INAUR=REGSFACEA SDELETE FIRST 4 FAGES
BERW ERROR

In the above example, the first call to S$EXPREG adds four pages to the
program region; the wvirtual addresses of the pages are returned in
the 2-longword array at BEGSPACEA. The second call adds three pages,
and returns the addresses at BEGSPACEB. The call to S$DELTVA deletes
the first four pages that were added.

10.2.1 1Input Address Arrays and Return Address Arrays

When the $EXPREG system service adds pages to a region, it adds them
in the normal direction of growth for the region. The return address
array, if requested, indicates the order in which the pages were
added:

° If the program region is expanded, the starting virtual
address is lower than the ending virtual address.

. If the control region is expanded, the starting virtual
address is higher than the ending virtual address.

Conversely, the direction of contraction with the SCNTREG system
service 1is from a higher to a lower address in the program region and
from a lower to a higher address in the control region.

The addresses returned indicate the first byte in the first page added
or deleted and the last byte in the last page added or deleted.

10-3

MEMORY MANAGEMENT SERVICES

When input address arrays are specified for the Create or Delete
Virtual Address Space system services (SCRETVA and SDELTVA,
respectively), these services add or delete pages beginning with the
address specified in the first longword and ending with the address
specified in the second longword.

The order in which the pages are added or deleted does not have to be
in the normal direction of growth for the region. Moreover, since
these services only add or delete whole pages, they ignore the
low-order 9 bits of the specified virtual address (the low-order 9
bits contain the byte offset within the page). The virtual addresses
returned do indicate the byte offsets.

Table 10-1 shows some sample virtual addresses that might be specified
as input to SCRETVA or SDELTVA and shows the return address arrays, if
all pages are successfully added or deleted.

Table 10-1
Sample Virtual Address Arrays

Input Array Output Array Number of
Start End Region Start End Pages
1010 1670 PO 1000 17FF 4
1450 1451 PO 1400 15FF 1
1450 1450 PO 1400 15FF 1
7FFECO010 7FFECO010 Pl T7FFECLFF 7FFEC000 1
7FFECO010 7FFEBCAQ Pl 7FFEC1FF TFFEBCO00 3

Note that if the input virtual addresses are the same, as in the
fourth item in Table 10-1, a single page is added or deleted. The
return address array indicates that the page was added or deleted in
the normal direction of growth for the region.

10.3 PAGE OWNERSHIP AND PAGE PROTECTION

Each page in a process's virtual address space 1is owned by a
particular access mode. The owner is the access mode that created the
page. For example, pages in the program region initially provided for
the execution of an 1image are owned by user mode. Pages that the
image creates dynamically are also owned by user mode. Pages in the
control region, except for the pages containing the user stack, are
normally owned by more privileged access modes.

Only the owner of a page can delete the page or otherwise affect it.
The owner of a page can also indicate, by means of a protection code,
the type of access that each access mode will be allowed.

The Set Protection on Pages ($SETPRT) system service changes the
protection assigned to a page or group of pages. The protection is
expressed as a code that indicates the specific type of access (none,
read-only, or read/write) for each of the four access modes (kernel,
executive, supervisor, user). Only the owner access mode or a more
privileged access mode can change the protection for a page.

10-4

MEMORY MANAGEMENT SERVICES

When an image attempts to access a page that is protected against the
access attempted, a hardware exception called an access violation
occurs. When an image calls a system service, the service determines
whether an access violation would occur when the image attempted to
read or write a page it is not privileged to access. If so, the
service returns the status code SS$_ACCVIO.

Since the memory management services add, delete, or modify a single
page at a time, one or more pages can be successfully affected before
an access violation is detected. If the RETADR arqument is specified
in the service call, the service returns the addresses of pages
actually affected before the error. If no pages are affected, that
is, 1if an access violation would occur on the first page specified,
the service returns a -1 in both 1longwords of the return address
array.

If the RETADR argument is not specified, no information is returned.

10.4 WORKING SET PAGING

When a process is executing an image, a subset of its pages resides in
physical memory; these pages are called the process's working set.
The working set includes pages in both the program region and the
control region.

When the image refers to a page that is not in memory, a hardware
fault occurs, and the page 1is brought into memory, replacing an
existing page in the working set. 1If the page that 1is going to be
replaced has been modified during the execution of the image, that
page is written onto a secondary storage device called the paging
device. When this page 1is needed again, it is brought back into
memory, again replacing a current page from the working set. This
exchange of pages between physical memory and secondary storage is
called paging.

The paging of a process's working set is transparent to the process.
However, 1if a program is very large, or if pages in the program image
that are heavily used are being paged in and out frequently, the
overhead required for paging may decrease the program's efficiency.
Some system services allow a process, within 1limits, to counteract
these potential problems:

'Y The Adjust Working Set Limit (SADJWSL) system service
increases or decreases the maximum number of pages that a
process can have in its working set.

o The Purge Working Set (SPURGWS) system service removes onhe or
more pages from the working set.

° The Lock Pages in Working Set (SLKWSET) system service makes
one or more pages in the working set ineligible for paging.

The initial size of a process's working set is defined by the
process's working set default (WSDEFAULT) gquota. Since some programs
may have larger memory requirements than others, a program can call
the $ADJWSL system service to dynamically 1increase the process's
working set limit. When the additional pages are no longer needed 1in
the working set, the program can call the $ADJWSL service to decrease
the working set limit. It can also call the SPURGWS system service to
remove pages no longer in use from the working set,

10-5

MEMORY MANAGEMENT SERVICES

When the system pages a process's working set, the pages in the
working set are paged on a first-in, first-out basis. Under some
circumstances, an image may not want certain pages to be paged out at
all; 1in this case, the image can lock these pages in the working set.
As long as the process's working set is in memory, these pages cannot
be paged out until they are explicitly unlocked with the Unlock Pages
in Working Set (SULWSET) system service.

10.5 PROCESS SWAPPING

The operating system balances the needs of all the processes that are
currently executing, providing each with the system resources it
requires on an as-needed basis. The memory management routines
balance the process's memory requirements. Thus, the sum of the
working sets for all processes that are currently in physical memory
is called the balance set.

When a process whose working set is in memory becomes inactive -- for
example, to wait for an 1I/0 request or to hibernate -- the entire
working set may be removed from memory to provide space for another
process's working set to be brought in for execution. This removal of
a process's working set is called swapping. When a process is swapped
out of the balance set, all of the pages of its working set (modified
and unmodified pages) are swapped, including any pages that had been
locked in the working set.

It is possible for a high-priority process to lock its entire working
set in the balance set. While pages can still be paged in and out of
the working set, the process remains in memory even when it Iis
inactive. To 1lock itself in the balance set, the process issues the
Set Process Swap Mode ($SETSWM) system service. For example:

$SETOWM.S SWRFLG=#1

This call to SSETSWM disables process swap mode. Swap mode can also
be disabled by setting the appropriate bit in the STSFLG argument to
the Create Process (SCREPRC) system service; however, you must have
the PSWAPM privilege to alter process swap mode,

Another way that a process can lock pages in memory is with the Lock
Pages in Memory (SLCKPAG) system service. When a page is locked in
memory with this service, the page remains in memory even when the
remainder of the process's working set is swapped out of the balance
set. This system service has limited applicability, but may be useful
in special circumstances, for example, for routines that perform I/O
operations to slow devices or graphics devices.

Pages locked in memory can be unlocked with the Unlock Pages in Memory
(SULKPAG) system service. The user privilege PSWAPM is required to
issue the SLCKPAG or $ULKPAG service.

10.6 SECTIONS

A section is a disk file or a portion of a disk file containing data
or code that can be brought into memory and made available to a
process for manipulation and execution. A section can also be one or
more consecutive page frames in physical memory or I/0 space instead
of a disk file; such sections, which require you to specify page
frame number mapping, are discussed in Section 10.6.13.

10-6

MEMORY MANAGEMENT SERVICES

Sections are either private or global (shared):

° Private sections are accessible only by the process that
creates them. A process can define a disk data file as a
section, map it into 1its wvirtual address space, and
manipulate it.

. Global sections can be shared by more than one process. One
cdpy of the global section resides in physical memory, and
each process sharing it refers to the same copy. A global
section can contain shareable code or data that can be read,
or read and written, by more than one process. Global
sections are either temporary or permanent, and can be
defined for use within a group or on a system-wide basis.

When modified pages in disk file sections are paged out of memory
during image execution, they are written back into the section file,
rather than into the paging file, as is the normal case with files.
(However demand-zero or copy-on-reference sSections are not written
back into the section file.)

The use of disk file sections involves two distinct operations:

1. The creation of a section defines a disk file as a section
and informs the system what portions of the file contain the
section.

2. The mapping of a section makes the section available to a
process and establishes the correspondence between virtual
blocks in the file and specific addresses in the process's
virtual address space.

The Create and Map Section ($CRMPSC) system service creates and/or
maps a private section or a global section. Since a private section
is used only by a single process, creation and mapping are
simultaneous operations. In the case of a global section, one process
can create a permanent global section and not map it; other processes
can map to it. A process can also create and map a global section in
one operation.

The following sections describe creating, mapping, and using disk file
sections. In each case, considerations that are common to both
private sections and global sections are described-first, followed by
additional notes and requirements for the use of global sections.

Section 10.6.13 discusses special requirements for page frame
sections.

10.6.1 Creating Sections
The steps involved in creating disk file sections are:
1. Opening or creating the disk file containing the section

2. Defining which wvirtual blocks in the file comprise the
section

3. Defining the characteristics of the section

10-7

MEMORY MANAGEMENT SERVICES

10.6.2 Opening the Disk File
Before a file can be used as a section, it must be opened using RMS.

The following example shows the file access block (FAB), OPEN macro,
and channel specification on the $CRMPSC system service to open an
existing file for reading:

SECFAR! $FAR FNM=<SECTION.TST>y FOP=UFD $FILE ACCESS RILOCK

*

SOFEN FAR=SECFAR
S$CRMFSC..S CHAN=SECFAR+FAR$L...5TVs .

The file options (FOP) parameter indicates that the file is to be
opened for user I/0; this option is required so that RMS assigns the
channel using the access mode of the caller. RMS returns the channel
number on which the file is accessed in the offset FABSL_STV; this
channel number is specified as input to the $CRMPSC system service
(CHAN argument). The same channel number can be used for multiple
create and map section operations. For global sections associated
with the same file, each process must open the file as shared by using
the SHR parameter.

The file may be a new file that is to be created while it is in use as
a section. In this case, use the $CREATE macro to open the file. 1If
you are creating a new file, the file access block (FAB) for the file
must specify an allocation qguantity (ALQ parameter).

SCREATE can also be used to open an existing file; if the file does
not exist, it will be created. The following example shows the
required fields in the FAB for the conditional creation of a file:

GERLFAR? $FAR FNM=GLOBAL s TST>y AL Q=4 ¢ FAC=PUT 5~
FOP=sUFQyCIFyCRT> » SHR=FUT

$CREATE FAR=GBLFAR

When the SCREATE macro is invoked, it creates the file GLOBAL.TST if
the file does not currently exist. The CBT (contiguous-best-try)
option requests that if possible, the file be contiguous. Although it
is not required that section files be contiguous, better performance
can result if they are.

10.6.3 Defining the Section Extents

Once the file is successfully opened, the $CRMPSC system service can
create a section from the entire file, or from only certain portions
of it., The following arguments to SCRMPSC define the extents of the
file that comprise the section:

° PAGCNT (page count). This argument is required; it
indicates the number of virtual blocks in the file. These
blocks correspond to pages in the section.

° VBN (virtual block number). This argument defines the number
of the virtual block in the file that is the beginning of the
section. It is an optional argument. If it |is not
specified, it defaults to 1; that is, the first virtual

10-8

MEMORY MANAGEMENT SERVICES

block in the file is the beginning of the section. (If vyou
have specified physical page frame number mapping, the VBN
argument specifies the starting page frame number.)

10.6.4 Defining the Section Characteristics

The FLAGS argument to the $CRMPSC system service defines the following
section characteristics:

) Whether it is a private section or a global section (the
default is to create a private section)

) How the pages of the section are to be treated when they are
copied into physical memory or when a process refers to them.
The pages in a section can be:

-—- Read/write or read-only

-- Created as demand-zero pages or as copy-on-reference
pages, depending on how the processes are going to use the
section and whether the file contains any data (see
Section 10.6.8, "Section Paging"”).

° Whether the section is to be mapped to a disk file or to
specific physical page frames (Section 10.6.13 discusses
physical page frame sections).

10.6.5 Defining Global Section Characteristics

If the section is a global section, it must be assigned a character
string name (GSDNAM argument) so that other processes can identify it
when they map it. The format of this character string name is
explained in the next subsection (10.6.5.1).

The FLAGS argument specifies the type of global section:

e Group temporary (the default)

e Group permanent

e System temporary

e System permanent
Group global sections can be shared only by processes executing with
the same group number. The name of a group global section is
implicitly qualified by the group number of the process that created
it. When other processes map to it, their group numbers must match.
A temporary global section is automatically deleted when no processes
are mapped to it, but a permanent global section remains in existence
even when no processes are mapped to it. A permanent global section
must be explicitly marked for deletion with the Delete Global Section
($SDGBLSC) system service.
The user privileges PRMGBL and SYSGBL are required to create permanent
group global sections, or system global sections (temporary or

permanent), respectively.

A system global section is available to all processes in the system.,

10-9

MEMORY MANAGEMENT SERVICES

Optionally, a process creating a global section can specify a
protection mask (PROT argument) restricting all access or a type of
access (read, write, execute, delete) to other processes.

10.6.5.1 Global Section Name - The GSDNAM argument specifies a
descriptor that points to a character string with the following
format:

[shared-memory-name:]global-section-name
shared-memory-name

Identifies the global section to be created, mapped, or deleted
as within the named memory that is shared by multiple processors.
The name of this memory was specified at system generation time,
For example, the string SHRMEMS$1:GSDATA identifies a global
section named GSDATA located in the shared memory named SHRMEMS1.

If this part of the string is not included and the section is
being mapped or deleted, the system tries to find the specified
global section first in local memory and then in shared memory
units (in the order in which they were connected).

global-section-name

The name assigned to the global section. You may choose any
valid name, from 1 to 15 characters; however, all processes
mapping to the same global section must specify the same name.

If you wish, you can include both the shared-memory-name and the
global-section-name for a global section in memory shared by multiple
processors. However, if you want to use existing programs without
recompiling or relinking, or if you want the program to work whether
the section is in local memory or shared memory, you can specify just
a global-section-name and have the system translate it to a complete
specification. The system attempts to perform logical name
translation of the string specified by the GSDNAM argument in the
following manner:

1. GBLS$ is prefixed to the string (to the part before the colon
if both parts are present), and the result is subjected to
logical name translation.

2. The part of the string after the colon (if any) 1is appended
to the translated name.

3. If the result contains a logical name, steps 1 and 2 are
repeated (up to 9 more times, if necessary) until translation
does not succeed.

For example, assume that you have made the following 1logical name
assignment:

% NEFINE GRLSGEDATA SHRMEMS1IGSDATA
Your program contains the following statements:

NAMEDESCS: ASCIND /GSDATA/ FUESCRIPTOR FOR LOGICAL NAME OF SECTION

L

SCRMPSC..S GOINAM=NAMEDESCy « o o

10-10

MEMORY MANAGEMENT SERVICES

The following logical name translation takes place:
1. GBLS is prefixed to GSDATA.

2. GBLSGSDATA is translated to SHRMEMS1:GSDATA. (No further
translation 1is successful, When logical name translation
fails, the string is passed to the service.)

There are two exceptions to the 1logical name translation method
discussed in this section:

e If the name string starts with an underscore (_), the VAX/VMS
system strips the underscore and considers the resultant
string to be the actual name (that is, no further translation
is performed).

e If the global section has a name in the format "name_nnn,"
VAX/VMS first strips the underscore and the digits (nnn), then
translates the resultant name according to the sequence
discussed in this section, and finally reappends the
underscore and digits. The system uses this method in
conjunction with known 1images and shared files installed by
the system manager.

10.6.6 Mapping Sections

When you code the SCRMPSC system service to create and/or map a
section, you must provide the service with a range of virtual
addresses (INADR argument) into which the section is to be mapped.

If you know specifically which pages the section should be mapped
into, you provide these addresses in a 2-longword array. For example,
to map a private section of 10 pages into virtual pages 10 through 19
of the program region, specify the input address array as follows:

MAPRANGE:
.LONG "X1400 ; ADDRESS (HEX) OF PAGE 10
.LONG "X2300 s ADDRESS (HEX) OF PAGE 19

However, you do not need to know the explicit addresses to provide an
input address range. If you simply want the section mapped into the
first available virtual address range in the program (PO) or control
(P1) region, you can specify the SEC$M_EXPREG flag bit in the FLAGS
argument. In this case, the addresses specified by the INADR argument
simply control whether the service finds the first available space in
the program or control region. The value specified or defaulted for
the PAGCNT argument determines the number of pages mapped. The
following example shows part of the code to map a section at the
current end of the program region.

MAPRANGE:
.LONG “X200 ; ANY PROGRAM (PO) REGION ADDRESS
.LONG "X200 ;ANY PO ADDRESS (CAN BE SAME)
RETRANGE:
.BLKL 2 ; ADDRESS RANGE RETURNED HERE

$CRMPSC_S INADR=MAPRANGE,RETADR=RETRANGE,-
FLAGS=<SECSM_EXPREG>,...

10-11

MEMORY MANAGEMENT SERVICES

The addresses specified do not have to be currently in the ©process's
virtual address space. The SCRMPSC system service creates the
required virtual address space during the mapping of the section. If
you code the RETADR argument, the service returns the range of
addresses actually mapped.

Once a section has been successfully mapped, the image can refer to
the pages using a base register or pointer and predefined symbolic
offset names or labels defining offsets of an absolute program section
or structure.

Figure 10-2 shows an example of <creating and mapping a process
section.

SECFAR! $FAR FNM=<SECTION . TST> » FOP=UFQ» FAC=PUT » SHR=GET » PUT>

MAFRANGE 3

+ LONG “X1400 JFIRST PAGE

+LONG “X2300 sLAST PAGE
RETRANGE

+ BLKIL 1 SFIRST FAGE MAFFED
ENDRANGE ¢

+ BLKL 1 FLAST FAGE MAFPED

@ $OFEN FAR=8ECFAR FOFEN SECTION FILE

RHEW ERROR

@ GCRMFSC..S5 INADR=MAFRANGEs-~ §INFUT ADDRESS ARRAY
RETADR=RETRANGE » - $0UTFUT ARRAY
FAGCNT=%4 5~ FMAF FOUR FAGES
© FLAGS=#SECSM.WRTy~ SREAD/WRITE SECTION
CHAN=SECFARHFARSL...STV § CHANNEL NUMRER
O EseuY ERROR
MOV RETRANGE » 6 FFOINT TO START OF SECTION

Figure 10-2 Creating and Mapping a Private Section

Notes on Figure 10-2:

@ The OPEN macro opens the section file defined in the file
access block SECFAB. (The FOP parameter to the S$FAB macro
must specify the UFO option.)

@ The $SCRMPSC system services uses the addresses specified at
MAPRANGE to specify an input range of addresses into which
the section will be mapped. The PAGCNT argument requests
that only four pages of the file be mapped.

® The FLAGS argument requests that the pages in the section be
read/write. The symbolic flag definitions for this argument
are defined in the $SECDEF macro. Note that the file access
field (FAC parameter) in the FAB also indicates that the file
is to be opened for writing.

® When $CRMPSC completes, the addresses of the four pages that
were mapped are returned 1in the output address array at
RETRANGE. The address of the beginning of the section |is
placed in register 6, which serves as a pointer to the
section.

10-12

MEMORY MANAGEMENT SERVICES

10.6.7 Mapping Global Sections

A process that creates a global section can map to it when it creates
it. Then, other processes can map it by calling the Map Global
Section ($MGBLSC) system service.

When a process maps a global section, it must specify the global
section name assigned to the section when it was created, whether it
is a group or system global section, and whether it desires read-only
or read/write access. The process may also specify:

. A version identification (IDENT argument), indicating the
version number of the global section (When multiple verisons
exist) and whether more recent versons are acceptable to the
process.

. A relative page number (RELPAG argument), specifying the page
number, relative to the beginning of the section, to begin
mapping the section. 1In this way, processes can use only
portions of a section. Additionally, a process can map a
piece of a section into a particular address range and
subsequently map a different piece of the section into the
same virtual addresses.

To specify that the global section being mapped is located in physical
memory that is being shared by multiple processors, you can include
the shared memory name in the GSDNAM argument character string (see
Section 10.6.5.1). A demand-zero global section in memory shared by
multiple processors must be mapped when it is created.

Cooperating processes can both 1issue a $CRMPSC system service to
create and map the same global section. The first process to call the
service actually creates the global section; subsequent attempts to
create and map the section result only in mapping the section for the
caller. The successful return status code SS$ CREATED indicates that
the section did not already exist when the SCRMPSC system service was

called. 1If the section did exist, the status code SS$_NORMAL is
returned.

Figure 10-3 shows one process (ORION) creating a global section and a
second process (CYGNUS) mapping the section.

10-13

MEMORY MANAGEMENT SERVICES

[Process ORION]

FLGCLUSTERS JOESCRIFTOR FOR COMMON EVENT FLAG CLUSTER NAME
+ASCID /FLAG.CLUSTER/

FLGSET = 63 FFLLAG NUMBER TO ASSOCIATE AND SET

FLGWAIT = 46 PFLAG NUMBER TO WAIT FOR

GLORBALSEC? SDESCRIFTOR FOR GLORAL SECTION NAME

+ASCID /GLOBAL..SECTION/

GERLFAR? SFAR FNM=<GLORAL TSTx y FOF=<UF Oy CIF yCRT > 5 -
AL Q=4 y FAC=PUT

+

@ $ASCEFC.S EFN=#FLGSETyNAME=FLGCLUSTER
RBSEW ERROR
@ SCRMFSC.S GSINAM=GLOBALSECy~ $CREATE GLORAL SECTION
FLAGS=$SECEM. WRT I SECEM..GRLy + 4+
RSRW ERROR
$SETEF..S EFN=$FLGSET $SET COMMON EVENT FLAG

| Process CYGNUS |

CLUSTER: ASCID /FLAG.CLUSTER/ 3CLUSTER NAME DESCRIFTOR
FLGSET = 6%
FLGWAIT = 66

SECTION: .aSCIN /GLOBAL.SECTION/ $SECTION NAME DESCRIFPTOR

+

+

© $ASCEFC.S EFN=#FLGSETy NAME=CLUSTER

RERW ERROR
SWATTFR.S EFN=#FLOGSET
BSEW ERROR

$MGRL.SC..8 INADR=MAFRANGE » RETADR=RETRANGE » -~
FLAGS=#BECHM..GRL v~ $GLORAL SECTION
GOONAM=SECTION FOECTION NAME
RERW ERROR

Figure 10-3 Creating and Mapping a Global Section

Notes on Figure 10-3:

" The processes ORION and CYGNUS are in the same group. Each
process first associates with a common event flag cluster
named FLAG_CLUSTER to use common event flags to synchronize

their use of the section.

@® ORION creates the global section named GLOBAL_SECTION,
specifying flags that indicate that it is a global section
(SECSM GBL) and that it 1is read/write. Input and output
address arrays, the page count parameter and the channel
number arguments are not shown; procedures for coding them

are the same as shown earlier in Figure 10-2.

(3] The process CYGNUS associates with the common event flag
cluster and waits for the flag defined as FLGSET. ORION sets
this flag when it has completed creating the section. To map
the section, CYGNUS specifies the input and output address

arrays, the flag indicating that it is a global section,

the global section name. In this example, the number of

pages mapped is the same as that specified by the creator
the section.

10-14

MEMORY MANAGEMENT SERVICES

10.6.8 Section Paging

The first time that an image executing in a process refers to a page
that was created during the mapping of a disk file section, the page
is copied into physical memory. The address of the page in the
process's virtual address space is mapped to the physical page.
During the execution of the image, normal paging can occur; however,
pages in sections are not written into the page file when they are
paged out, as is the normal case. Rather, if they have been modified,
they are written back into the section file on disk. The next time a
page fault .occurs for the page, the page 1is brought back from the
section file,

However, if the pages in a section were defined as demand-zero pages
or copy-on-reference pages when the section was created, the pages are
treated differently:

e If the call to $CRMPSC requested that pages in the section be
treated as demand-zero pages, these pages are initialized to
zeros when they are first brought into physical memory. If
the file 1is either a new file that is being created as a
section or a file that 1is being completely rewritten,
demand-zero pages provide a convenient way of initializing the
pages. The pages are paged back into the section file.

e If the call to $CRMPSC requested that pages in the section be
copy-on-reference pages, each process that maps to the section
receives its own copy of the section, on a page-by-page basis
from the file, as it refers to them. These pages are never
written back into the section file, but are paged to the
paging file as needed.

In the case of global sections, more than one process can be mapped to
the same physical pages. If these pages need to be paged out or
written back to the disk file defined as the section, these operations
are done only when no processes are currently mapped to the pages.

10.6.9 Reading and Writing Data Sections

Read/write sections provide a way for a process or cooperating
processes to manipulate data files in virtual memory.

The sharing of global sections may involve application-dependent
synchronization techniques. For example, one process can create and
map to a global section in read/write status; other processes can map
to it in read-only status and interpret data written by the first
process. Or, two or more processes can write to the section
concurrently. (In this case, the application program must provide the
necessary synchronization and protection.) '

When a file that has been mapped as a section is written back to disk,
its wversion number is not incremented but the revision number is. A
full directory listing indicates the revision number of the file and
the date and time that the file was last updated.

When the file has been updated, the process or processes can release,

or unmap, the section. The section is then written back into the disk
file defined as a section.

10-15

MEMORY MANAGEMENT SERVICES

10.6.10 Releasing and Deleting Sections

A process unmaps a section by deleting the virtual addresses in its
own virtual address space to which it has mapped the section. If a
return address range was specified to receive the virtual addresses of
the mapped pages, this address range can be used as input to the
Delete Virtual Address Space ($DELTVA) system service. For example:

$OELTVA.LS INADR=RETRANGE

When a process unmaps a private section, the section is deleted; that
is, all control information maintained by the system is deleted. A
temporary global section is deleted when all processes that have
mapped to it have unmapped it. Permanent global sections are not
deleted until they are specifically marked for deletion with the
Delete Global Section ($DGBLSC) system service; they are then deleted
when no more processes are mapped.

Note that deleting the pages occupied by a section does not delete the
section file, but rather cancels the process's association with the
file. Moreover, when a process deletes pages mapped to a read/write
section and no other processes are mapped to it, all modified pages
are written back into the section file.

When a section has been deleted, the channel assigned to it <can be
deassigned. The process that created the section can deassign the
channel (with the Deassign I/0 Channel system service). For example:

$DABEEN..E CHAN=GEBLFAR+FARSL...BTV

10.6.11 Writing Back (Checkpointing) Sections

Since read/write sections are normally not updated on disk wuntil the
physical pages they occupy are paged out, or until all processes
referring to the section have unmapped it, a process may want to
ensure that all modified pages are successfully written back into the
section file at regular intervals.

The Update Section File on Disk (SUPDSEC) system service writes the
modified pages in a section into the disk file. This process of
writing back modified pages in a section 1is sometimes called
"checkpointing" the section. The SUPDSEC system service is described
in Part II.

10.6.12 Image Sections

Global sections can contain shareable code. An 1image file that is
going to be defined as a section must contain position-independent
code.

The operating system uses global sections to implement shareable code
as follows:

1. The object module containing code to be shared is 1linked to
produce a shareable image. The shareable image is not, in
itself, executable. It contains a series of sections, called
image sections.

10-16

MEMORY MANAGEMENT SERVICES

2. A user links private object modules with the shareable image
to produce an executable image. Only image section
descriptor records from the shareable image file are bound
with the 1image sections from the user's code (unless
/SHAREABLE=COPY was specified in a linker options file).

3. The system manager uses the INSTALL command to create a
permanent global section from the shareable 1image file,
making the image sections available for sharing.

4., When the wuser runs the executable image, the system
automatically maps the global sections created by the INSTALL
command into the virtual address space of the user's process.

For details on how to create and identify shareable images and how to
link them with private object modules, see the VAX-11 Linker Reference
Manual. For information on installing shareable 1images and making
them available for sharing as global sections, see the VAX/VMS System
Manager's Guide.,

10.6.13 Page Frame Sections

A page frame section is one or more contiqguous pages of physical
memory or I/0 space that have been mapped as a section. One use of
page frame sections is to map to an I/0 page, thus allowing a process
to read device registers. A process mapped to an I/0 page can also
connect to a device interrupt vector.

A page frame section differs from a disk file section in that it 1is
not associated with a particular disk file and is not paged. However,
it is similar to a disk file section in most other respects: you
create, map, and define the extent and characteristics of a page frame
section in essentially the same manner as you do a disk file section.

To create a page frame section, you must specify page frame number
mapping by setting the SEC$M_PFNMAP flag bit in the FLAGS argument to
the Create and Map Section (SCRMPSC) service. The VBN argument is now
used to specify the first page frame to be mapped instead of the first
virtual block., You must have the user privilege PFNMAP to create or
delete a page frame section, but not to map to an existing one.

Because this type of section is not associated with a disk file, the
RELPAG, CHAN, and PFC arguments to the $CRMPSC service are not used in
creating or mapping a page frame section. For the same reason, the
SEC$M_CRF (copy on reference) and SECSM DZRO (demand-zero) bit
settings in the FLAGS argument do not apply. Pages in page frame
sections are not written back to any disk file (including the paging
file).

Use caution in working with page frame sections, If you permit write
access to the section, each process that writes to the section does so
at its own risk. Serious errors can occur if a process writes
incorrect data or writes to the wrong page, especially if the page is
also mapped by the system or by another process. Thus, the security
of a system can be violated or damaged by any user having the PFNMAP
privilege.

10-17

PART II

SYSTEM SERVICE DESCRIPTIONS

This part of the manual describes each of the VAX/VMS system services,

The services are presented in alphabetical order by their abbreviated
names.

Each system service description consists of the following categories,
as applicable. Certain services require detailed information beyond
these categories, For these services, the additional information
appears after the "Notes" section.

Macro Format

Shows the macro name, with all keyword arguments 1listed in
positional order. Spaces between arguments are present for
readability and are not part of the macro syntax.

High-Level Language Format

Shows the procedure name and a generalized format for calling the
service from a high-level language, with all arguments listed in
positional order. For more information about a specific
language, see Section 2.3 in Part I. Spaces between arguments
are present for readability and are not part of the statement
syntax.

Arguments

Describes each of the arguments.

Return Status

Lists the possible return status codes from the service with an
explanation of the return condition. The successful returns are
listed first, in alphabetical order, followed by warning and
severe error return status codes, also in alphabetical order.
All status codes are severe errors, unless otherwise indicated.

Three severe errors may occur for all services and are not listed
with each service description. These are:

SS$_ACCVIO

The argument list cannot be read by the caller (using
the $service G form), and the service is not called.
The meaning of SS$ ACCVIO in this case is different
from the meaning” of the SS$_ACCVIO status listed for
many individual services; in these latter cases, the
service 1is ~called, but one or more specific arguments
are addresses that cannot be read or written by the
caller.

SS$_INSFARG
Not enough arguments were supplied to the service.
SS$_ILLSER

An illegal system service was called.

Privilege Restrictions
Notes any user privileges required to execute the service or to
request a particular function of the service, or any access mode
restrictions applied to the service.

Resources Required/Returned
Lists any system resources or process quotas used by the service,
or returned to a process as a result of service execution.

Notes

Contains the "fine print" of the service description, as well as
references to related services or additional information.

$ADJSTK - ADJUST OUTER MODE STACK POINTER

$ADJSTK

SADJSTK - ADJUST OUTER MODE STACK POINTER

The Adjust Outer Mode Stack Pointer system service modifies the stack
pointer for a less privileged access mode. This service is used by
the operating system to modify a stack pointer for a 1less privileged
access mode after placing arguments on the stack.

Macro Format

SADJSTK [acmode] ,[adjust] ,newadr

High-Level Language Format
SYSSADJSTK ([acmode] ,[adjust] ,newadr)

acmode
Access mode for which the stack pointer is to be adjusted. If
not specified, this value defaults to 0, indicating kernel access
mode.

adjust
Signed adjustment value. The contents of the longword addressed
by the NEWADR argument are adjusted by the amount specified in
the low-order 16 bits of this argument. The result 1is loaded
into the stack pointer for the specified access mode.

If not specified, or specified as 0, the stack pointer is loaded
with the address specified by the NEWADR argument.

newadr
Address of a longword to receive the wupdated value, If the
longword contains a nonzero value, then that value is updated by
the ADJUST argument value and the result is loaded into the stack
pointer.
If the longword contains a 0, the current value of the stack
pointer is updated by the ADJUST argument value.

Return Status

SS$_NORMAL
Service successfully completed.

SS$_ACCVIO

The longword to store the updated stack pointer or a portion of
the new stack segment cannot be written by the caller.

SS$_NOPRIV

The specified access mode is equal to or more privileged than the
calling access mode.

$ADJSTRK - ADJUST OUTER MODE STACK POINTER

Notes

Combinations of zero and nonzero values for the ADJUST argument
and the NEWADR longword provide the following results:

If the ADJUST And the longword The stack
argument addressed by pointer
specifies: NEWADR contains: is:

0 0 not changed

0 an address loaded with the

address specified

a value 0 adjusted by the
specified value

a value an address loaded with the
specified address,
adjusted by the
specified value

In all cases, the updated stack pointer value is written into the
longword addressed by NEWADR,

SADJWSL - ADJUST WORKING SET LIMIT

$ADJWSL

SADJWSL - ADJUST WORKING SET LIMIT

The Adjust Working Set Limit system service changes the current 1limit
of a process's working set size by a specified number of pages. This
service allows a process to control the number of pages resident in
physical memory for the execution of the current image.

Macro Format

SADJWSL [pagcnt] , [wsetlm]

High-Level Language Format
SYSSADJIWSL ([pagcnt] , [wsetlm])

pagcnt
Number of pages to adjust the current maximum working set sigze.
A positive wvalue increases the maximum working set size; a
negative value decreases it. If not specified, or specified as
0, the current working set size limit is returned in the address
specified by the WSETLM argument, if that argument is coded.

wsetlm

Address of a longword to receive the new working set size 1linmit,
or, 1if the PAGCNT argument is not specified, to receive the
current working set size limit.

Return Status

SS$_NORMAL

Service successfully completed.

SS$_ACCVIO

The longword to receive the new working set size limit cannot be
written by the caller.

Resources Required/Returned

The initial value of a process's working set size 1is «controlled
by the working set default quota (WSDEFAULT). The maximum value
to which it may be increased is controlled by the working set
limit quota (WSQUOTA).

SADJWSL - ADJUST WORKING SET LIMIT

Notes

If a program attempts to adjust the working set size beyond the
system-defined upper and 1lower 1limits, no error condition is
returned. The working set size is adjusted to the maximum or
minimum size allowed; the caller can check the new working set
size to verify the change.

For more details on memory management concepts and additional services

that help a process control paging and swapping, see Chapter 10,
"Memory Management Services."

$ALLOC - ALLOCATE DEVICE

$ALLOC

$ALLOC - ALLOCATE DEVICE

The Allocate Device system service reserves a device for exclusive use
by a process and its subprocesses. No other process can allocate the
device or assignh channels to it until the image that called S$ALLOC
exits or explicitly deallocates the device with the Deallocate Device
($DALLOC) system service.

Macro Format

$ALLOC devnam , [phylen] ,[phybuf] ,[acmode]

High-Level Language Format

SYSSALLOC (devnam , [phylen] , [phybuf] , [acmode])

devnam

Address of a character string descriptor pointing to the device
name string. The string may be either a physical device name or
a logical name, If the first character in the string 1is an
underline character(), the name is considered a physical device
name. Otherwise, a single level of logical name translation is
performed and the equivalence name, if any, is used. The final
name, however, cannot contain a node name unless the name is that

of the host system.
phylen

Address of a word to receive the length of the allocated device
name string.

phybuf
Address of a character string descriptor pointing to the buffer
to receive the physical device name string of the allocated
device. The first character 1in the string returned 1is an
underline character (_).

acmode

Access mode to be associated with the allocated device. The
specified access mode is maximized with the access mode of the
caller. Only equal or more privileged access modes can
deallocate the device.

Return Status

SS$_NORMAL
Service successfully completed.

SS$_BUFFEROVF

Service successfully completed. The physical name returned
overflowed the buffer provided, and has been truncated.

$ALLOC ~ ALLOCATE DEVICE

SS$_ACCVIO

The device name string, string descriptor, or physical name
buffer descriptor cannot be read by the caller; or the physical
name buffer cannot be written by the caller.

SS$_DEVALLOC

Warning. The device is already allocated to another process, or
an attempt to allocate an unmounted shareable device failed
because other processes had channels assigned to the device.

SS$_DEVMOUNT

The specified device is currently mounted and cannot be
allocated; or the device is a mailbox.

SS$_IVDEVNAM

No device name string was specified, or the device name string
contains invalid characters.

Ss$_IVLOGNAM

The device name string has a length of 0 or has more than 63
characters.

SS$_NONLOCAL
Warning. The device is on a remote node.
SS$_NOPRIV

An attempt was made to allocate a spooled device and the
requesting process does not have the required privilege.

SS$_NOSUCHDEV

Warning. The specified device does not exist in the host system.

Privilege Restrictions

The user privilege ALLSPOOL is required to allocate a spooled
device.

Notes

1. When a process calls the Assign I/0 Channel (SASSIGN) system
service to assign a channel to a nonshareable, nonspooled
device, such as a terminal or line printer, the device |is
implicitly allocated to the process.

2. This service can only be used to allocate devices that exist
on the host system.

For an example of how to use this service and a description of the
allocation of devices by generic device names, see Chapter 6,
"Input/Output Services."

$ASCEFC -~ ASSOCIATE COMMON EVENT FLAG CLUSTER

$ASCEFC

SASCEFC - ASSOCIATE COMMON EVENT FLAG CLUSTER

The Associate Common Event Flag Cluster system service causes a named
common event flag cluster to be associated with a process for the
execution of the current image and assigned a process-local cluster
number for use with other event flag services., If the named cluster

does not exist but the process has suitable privilege, the service
creates the cluster.

Macro Format

SASCEFC efn ,name ,[prot] ,[perm]

High~Level Language Format
SYSSASCEFC (efn ,name ,[prot] ,[perm])
efn

Number of any event flag in the common cluster to be associated.
The flag number must be in the range of 64 through 95 for cluster
2 and 96 through 127 for cluster 3.

name

Address of a character string descriptor pointing to the text
name string for the cluster. (Section 3.7.1 explains the format
of this string.) The name is implicitly qualified by the group
number of the process issuing the associate request.

prot

Protection indicator controlling group access to the common event
flag cluster. A value of 0 (the default) indicates that any
process in the creator's group may access the cluster. A value
of 1 indicates that access is restricted to processes executing
with the creator's UIC.

perm

Permanent indicator. If perm is equal to 1, the common event
cluster is marked permanent.

If perm is equal to 0, the cluster is temporary; this 1is the
default value,

Return Status

SS$_NORMAL
Service successfully completed.

SS$_ACCVIO

The cluster name string or string descriptor cannot be read by
the caller.

SASCEFC — ASSOCIATE COMMON EVENT FLAG CLUSTER

S8$_EXPORTQUOTA

The process has exceeded the number of clusters that processes on
this port of the multiport (shared) memory can associate with.

SS$_EXQUOTA

The process has exceeded its timer queue entry quota; this quota
controls the creation of temporary common event flag clusters.

SS$_INSFMEM

Insufficient system dynamic memory is available to complete the
service and the process has disabled resource wait mode with the
Set Resource Wait Mode ($SSETRWM) system service.

SS$_ILLEFC

An illegal event flag number was specified. The <cluster number
must be in the range of event flags 64 through 127,

55$_INTERLOCK

The bit map lock for allocating common event flag clusters from
the specified shared memory is locked by another process.

SS$_IVLOGNAM

The cluster name string has a length of 0 or has more than 15
characters.

SS$_NOPRIV

The process does not have the privilege to create a permanent
cluster, the process does not have the privilege to create a
common event flag cluster in memory shared by multiple
processors, or the protection applied to an existing cluster by
its creator prohibits association.

SS$_NOSHMBLOCK

No shared memory control block for common event flag clusters is
available.

SSS_SHMNOTCNCT
The shared memory named in the NAME string is not known to the
system. This error can be caused by a spelling error in the
string, an improperly assigned logical name, or the failure to
identify the memory as shared at SYSGEN time.

Privilege Restrictions

The user privilege PRMCEB is required to create a permanent
common event flag cluster.

The user privilege SHMEM is required to create a common event
flag cluster in memory shared by multiple processors.

10

Resou

Notes

For a
servi
Servi

SASCEFC - ASSOCIATE COMMON EVENT FLAG CLUSTER

rces Required/Returned

Creation of temporary common event flag clusters uses the
process's quota for timer queue entries (TQELM); the creation of
a permanent cluster does not effect the quota. The quota is
restored to the creator of the <cluster when all processes
associated with the cluster have disassociated.

1. When a process associates with a common event flag cluster,
that cluster's reference count 1is increased by 1. The
reference count is decreased when a process disassociates the
cluster either explicitly with the Disassociate Common Event
Flag Cluster (SDACEFC) system service, or implicitly, at
image exit.

Temporary clusters are automatically deleted when their
reference count goes to 0; permanent clusters must be
explicitly marked for deletion with the Delete Common Event
Flag Cluster (SDLCEFC) system service.

2. Since this service automatically creates the common event
flag cluster if it does not already exist, cooperating
processes need not be concerned with which process executes
first to create the cluster. The first process to call
SASCEFC creates the cluster and the others associate with it
regardless of the order in which they call the service.

The initial state for all event flags in a newly-created
common event flag cluster is 0.

3. If a process has already associated a cluster number with a
named common event flag cluster and then issues another call
to S$ASCEFC with the same cluster number, the service
disassociates the number from its first assignment before
associating it with its second.

n example of the $ASCEFC system service and descriptions of

ces that manipulate event flags, see Chapter 3, "Event Flag
ces."

11

$ASCTIM - CONVERT BINARY TIME TO ASCII STRING

$ASCTIM

$ASCTIM - CONVERT BINARY TIME TO ASCII STRING

The Convert Binary Time to ASCII String system service converts an
absolute or delta time from 64-bit system time format to an ASCII
string. The formats of the strings returned are described in Note 3
on the next page.

Macro Format

SASCTIM [timlen] ,timbuf ,[timadr] ,[cvtflg]

High-Level Language Format

SYSSASCTIM([timlen] ,timbuf ,[timadr] ,[cvtflgl])

timlen

Address of a word to receive the 1length of the output string
returned.

timbuf

Address of a character string descriptor pointing to the buffer
to receive the converted string. The buffer length specified in
the descriptor, together with the CVTFLG argument, controls what
information is returned. See Note 4 on the next page.

timadr

Address of the 64-bit time value to be converted. If no address
is specified or is specified as 0 (the default), the current date
and time are returned. A positive time value represents an
absolute time. A negative time value represents a delta time.
If a delta time is specified, it must be less than 10,000 days.

cvtflg
Conversion indicator. A value of 1 causes only the hour, minute,
second, and hundredth of second fields to be returned, depending
on the length of the buffer. A value of 0 (the default) causes
the full date and time to be returned, depending on the length of
the buffer.

Return Status

SS$_NORMAL
Service successfully completed.

SS$_IVTIME

The specified delta time is equal to or greater than 10,000 days.

12

Notes

$ASCTIM - CONVERT BINARY TIME TO ASCII STRING

The $ASCTIM service executes at the access mode of the caller
and does not check whether address arguments are accessible
before it executes. Therefore, an access violation causes an
exception condition if the input time value cannot be read or
the output buffer or buffer length cannot be written,

This service does not check the length of the argument 1list,
and therefore cannot return the SS$ INSFARG (insufficient
arguments) error status code. If the service does not
receive enough arguments (for example, if you omit required
commas in the call), you might not get the desired result.
The ASCII strings returned have the following formats:
Absolute Time: dd-mmm-yyyy hh:mm:ss.cc

Delta Time: dddd hh:mm:ss,cc

Length
Field (Bytes) Contents Range of values
dd 2 day of month 1 - 31
- 1 hyphen
mmm 3 month JAN, FEB, MAR, APR,
MAY, JUN, JUL, AUG,
SEP, OCT, NOV, DEC
- 1 hyphen
YYYY 4 year 1858 - 9999
blank 1 blank
hh 2 hour 00 - 23
: 1 colon
mm 2 minutes 00 - 59
: 1 colon
ss 2 seconds 00 - 59
. 1 period
cc 2 hundredths 00 - 99
of seconds
dddd 4 number of 000 - 9999

days

Some possible combinations of buffer length specification and
CVTFLG arguments, and their results, are shown below:

Buffer Length CVTFLG Information
Time Value Specified Argument Returned
Absolute 23 0 date and time
Absolute 11 0 date
Absolute 11 1 time
Delta 16 0 days and time
Delta 11 1 time

For an example of the S$ASCTIM system service, see Chapter 8, "Timer
and Time Conversion Services."

13

$ASSIGN - ASSIGN I/0O CHANNEL

$ASSIGN

$ASSIGN - ASSIGN I/O CHANNEL

The Assign I/0 Channel system service (1) provides a process with an
I/0 channel so that input/output operations can be performed on a
device, or (2) establishes a logical link with a remote node on a
network.

Macro Format

SASSIGN devnam ,chan ,[acmode] , [mbxnam]

High-Level Language Format
SYS$ASSIGN (devnam ,chan , [acmode] , [mbxnam])
devnam

Address of a character string descriptor pointing to the device
name string. The string may be either a physical device name or
a logical name. If the first character in the string is an
underline character (), the name is considered a physical device
name. Otherwise, a single level of logical name translation is
performed and the equivalence name, if any, is used.

If the device name contains a double colon (::), the system
assigns a channel to the device NETO: and performs an access
function on the network.

chan

Address of a word to receive the channel number assigned.

acmode

Access mode to be associated with the channel. The specified
access mode is maximized with the access mode of the caller. I/0
operations on the channel can only be performed from equal and
more privileged access modes.

mbxnam
Address of a character string descriptor pointing to the logical
name string for the mailbox to be associated with the device, if
any. The mailbox receives status information from the device
driver, as described in Note 2, below.

An address of 0 implies no mailbox; this is the default value.

Return Status
SSS_NORMAL

Service successfully completed.
SS$_REMOTE

Service successfully completed. A logical 1link 1is established
with the target on a remote node.

14

$ASSIGN - ASSIGN I/0 CHANNEL

SS$_ABORT

A physical line went down during a network correct operation,

SS$_ACCVIO

The device or mailbox name string or string descriptor cannot be
read by the caller, or the channel number cannot be written by
the caller.

SS$_DEVACTIVE

A mailbox name has been specified, but a mailbox 1is already
associated with the device.

SS$_DEVALLOC

Warning. The device is allocated to another process.

SS$_DEVNOTMBX

A logical name has been specified for the associated mailbox, but
the logical name refers to a device that is not a mailbox.

SS$_EXQUOTA

The target of the assignment is on a remote node and the process
has insufficient buffer quota to allocate a network control
block.

SS$_INSFMEM

The target of the assignment is on a remote node and there is
insufficient system dynamic memory to complete the request.

SS$_IVDEVNAM

No device name was specified, or the device or mailbox name
string contains invalid characters. If the device name is a
target on a remote node, this status code indicates that the
Network Connect Block has an invalid format.

SS$_IVLOGNAM

The device or mailbox name string has a length of 0 or has nmore
than 63 characters.

SS$_NOIOCHAN

No I/O channel is available for assignment.

SS$_NOLINKS

No logical network links are available.

§S$_NOPRIV

The process does not have the privilege to perform network
operations,

SS$_NOSUCHDEV

Warning. The specified device or mailbox does not exist.

15

$ASSIGN - ASSIGN I/0O CHANNEL

SS$_NOSUCHNODE
The specified network node is nonexistent or unavailable.
8S$_REJECT
The network connect was rejected by the network software or by
the partner at the remote node; or the target image exited
before the connect confirm could be issued.
Privilege Restrictions
The NETMBX privilege is required to perform network operations.

Resources Required/Returned

System dynamic memory is required if the target device is on a
remote system.

Notes

1. For details on how to use S$ASSIGN in conjunction with network
operations, see the DECnet-VAX User's Guide.

2. Only the owner of a device can associate a mailbox with the
device (the owner 1is the process that has allocated the
device, either implicitly or explicitly), and only one
mailbox can be associated with a device at a time. 1If a
mailbox is associated with a device, the device driver can
send messages containing status information to the mailbox,
as in the following cases:

e If the device is a terminal, a message indicates dialup,
hangup, or the reception of unsolicited input.

e If the target is on a network, the message may indicate
that the network is connected or initiated, or whether the
line is down.

e If the device is a line printer, the message indicates
that the printer is offline.

For details on the message format and the information
returned, see the VAX/VMS I/0 User's Guide.

Mailboxes cannot be associated with devices that have
file-oriented (DEVSM_FOR) or shareable (DEV$M_SHR)
characteristics.

A mailbox is disassociated from a device when the channel
that associated it is deassigned.

3. Channels remain assigned until they are explicitly deassigned
with the Deassign I/0 Channel ($DASSGN) system service, or,
if they are user-mode channels, until the image that assigned
the channel exits.,

4, The S$ASSIGN service establishes a path to a device, but does
not check whether the caller can actually perform
input/output operations to the device. Privilege and
protection restrictions may be applied by the device drivers,
For details on how the system controls access to devices, see
the VAX/VMS I/0 User's Guide.

For examples of how to use $ASSIGN to assign channels for input/output
operations, see Chapter 6, "Input/Output Services."

16

$BINTIM - CONVERT ASCII STRING TO BINARY TIME

$BINTIM

SBINTIM - CONVERT ASCII STRING TO BINARY TIME
The Convert ASCII String to Binary Time system service converts an
ASCII string to an absolute or delta time value in the system 64-bit

time format suitable for input to the Set Timer (SSETIMR) or Schedule
Wakeup (SSCHDWK) system services.

Macro Format

SBINTIM timbuf ,timadr

High-Level Language Format
SYSSBINTIM(timbuf ,timadr)

timbuf

Address of a character string descriptor pointing to the buffer
containing the absolute or delta time to be converted. The

required formats of the ASCII strings are described in the Notes,
below.

If a delta time is specified, it must be less than 10,000 days.

timadr

Address of a quadword that is to receive the converted time in
64-bit format.

Return Status
SS$_NORMAL
Service successfully completed.

SS$_IVTIME

The syntax of the specified ASCII string is invalid, or the time
component is out of range.

Notes

1. The S$BINTIM service executes at the access mode of the caller
and does not check whether address arguments are accessible
before it executes. Therefore, an access violation causes an
exception <condition if the input buffer or buffer descriptor
cannot be read or the output buffer cannot be written.

2. This service does not check the length of the argument 1list,
and therefore cannot return the SS$ INSFARG (insufficient
arguments) error status code. If the service does not
receive enough arguments (for example, if you omit required
commas in the call), you might not get the desired result.

17

The
Abs

Del

Fie
dd

mmm

Yyy
bla

dadd

The
inp

$BINTIM - CONVERT ASCII STRING TO BINARY TIME

required ASCII input strings have the format:

olute Time: dd-mmm-yyyy hh:mm:ss.cc

ta Time: dddd hh:mm:ss.cc
Length
1d (Bytes) Contents Range of values
2 day of month 1 - 31
1 hyphen Required syntax
3 month JAN, FEB, MAR, APR,
MAY, JUN, JUL, AUG,
SEP, OCT, NOV, DEC
1 hyphen Required syntax
y 4 year 1858 - 9999
nk n blank Required syntax
2 hour 00 - 23
1 colon Required syntax
2 minutes 00 - 59
1 colon Required syntax
2 seconds 00 - 59
1 period Required syntax
2 hundredths 00 - 99
of seconds
d 4 number of 000 - 9999
days (in
24-hour
units)
following syntax rules apply to the coding of the ASCII

ut string:
Any of the fields of the date and time can be omitted.

For absolute time values, the $BINTIM service supplies the
current system date and time for nonspecified fields.
Trailing fields can be truncated. 1If leading fields are
omitted, the punctuation (hyphens, blanks, colons,
periods) must be specified. For example, the string

-- 12:00:00.00
results in an absolute time of 12:00 on the current day.

For delta time values, the $BINTIM service defaults
nonspecified fields to 0. Trailing fields can be
truncated. If leading fields are omitted from the time
value, the punctuation (blanks, colons, periods) must be
specified. For example, the string

0 ::10
results in a delta time of 10 seconds.

For both absolute and delta time values, there can be any
number of 1leading or trailing blanks, and any number of
blanks between fields normally delimited by blanks.
However, there can be no embedded blanks within either the
date or time fields, and no trailing characters that are
not blanks (blank = hex 20).

18

$BRDCST - BROADCAST

$BRDCST

$BRDCST - BROADCAST
The Broadcast system service writes a message to one or more

terminals.

Macro Format

$BRDCST msgbuf, [devnam]

High-Level Language Format
SYSS$BRDCST (msgbuf, [devnam])

msgbuf

Addess of a character string descriptor pointing to the text of

the message to be broadcast. The maximum length of the message
is 250 bytes.

devnam

Address of a character string descriptor pointing to the name of
the terminal that is to receive the message. The string may be
either a physical device name or a logical name. If the first
character in the string is an underscore character (), the name
is considered a physical device name. Otherwise, a single level
of logical name translation 1is performed and the equivalence
name, if any, is used.

If this argument is omitted, or specified as 0, then the message
is broadcast to all terminals.

If the first longword in the descriptor contains a 0, the message
is sent to all terminals that are currently allocated to
processes.

Return Status

SS$_NORMAL

Service successfully completed.

§S$_ACCVIO

The messagé buffer or buffer descriptor, or the device name
string or string descriptor, cannot be read by the caller.

SS$_DEVOFFLINE

The specified terminal is offline, has disabled broadcast message
reception, has enabled passall mode, or is not a terminal.

SS$_EXQUOTA

The process has exceeded its buffer space quota and has disabled
resource wait mode with the Set Resource Wait Mode ($SETRWM)
system service.

19

$BRDCST -~ BROADCAST

SS$_INSFMEM

Insufficient system dynamic memory is available to complete the
request and the process has disabled resource wait mode with the
Set Resource Wait Mode ($SETRWM) system service.

SS$_NOPRIV

The process does not have the privilege to broadcast messages.

SS$_NOSUCHDEV

Warning. The specified terminal does not exist, or it cannot
receive the message.

Privilege Restrictions

The user privilege OPER is required to broadcast a message to
more than one terminal or to broadcast a message to a terminal
that is allocated to any other user.

Resources Required/Returned

This service requires system dynamic memory, and uses the
process's buffered I/0 byte count quota (BYTLM) to buffer the
message while the service executes,

Notes

1., The service does not return control to the caller until all
specified terminals have displayed the broadcast message.

2. The current state (reading or writing) of each specified
terminal determines when the message is displayed:

e If the terminal is reading, the read operation 1is
suspended, the broadcast occurs, and then the line
being read is redisplayed (a CTRL/R is performed).

e If the terminal is writing, the message is broadcast
when the current write is complete.

However, the message is not displayed in any of the following
cases: the terminal is 1in PASSALL mode, the current
operation is a "read physical block"™ (IO$ READPBLK function
code), or the current operation has ¥no echo" specified
(IOSM_NOECHO function modifier) or "no format" specified
(IOSM_NOFORMAT function modifier).

After the message is displayed, each terminal is returned to
the state it was in prior to receiving the message. The
message is preceded and followed by a carriage return/line
feed.

A terminal cannot receive a broadcast message, however, if it
has the /NOBROADCAST characteristic.

20

$CANCEL - CANCEL I/0 ON CHANNEL

$CANCEL

$CANCEL - CANCEL I/0 ON CHANNEL

The Cancel I/0 On Channel- system service cancels all pending 1I/0
requests on a specific channel. 1In general, this includes all I/0
requests that are queued as well as the request currently in progress.

Macro Format

SCANCEL chan

High-Level Language Format
SYSS$CANCEL (chan)

chan

Number of the I/0 channel on which I/0 is to be canceled.

Return Status

SS$_NORMAL
Service successfully completed.

SS$_EXQUOTA
The process has exceeded its quota for direct I/0 and has
disabled resource wait mode with the Set Resource Wait Mode
($SETRWM) system service,

SS$_INSFMEM
Insufficient system dynamic memory is available to cancel the
I1/0, and the process has disabled resource wait mode with the Set
Resource Wait Mode ($SETRWM) system service.

SS$_IVCHAN

An invalid channel was specified, that is, a channel number of 0
or a number larger than the number of channels available.

SS$_NOPRIV

The specified channel is not assigned, or was assigned from a
more privileged access mode.

Privilege Restrictions

I/0 can be canceled only from an access mode equal to or more
privileged than the access mode from which the original channel
assignment was made.

21

$CANCEL -~ CANCEL I/0 ON CHANNEL

Resources Required/Returned

The Cancel I/0 on channel system service requires system dynamic
memory and uses the process's direct I/0 limit (DIOLM) quota.

Notes

1. When a request currently in progress is canceled, the driver
iss notified immediately. Actual cancellation may or may not
occur immediately depending on the 1logical state of the
driver. When cancellation does occur, the action taken for
I/0 in progress is similar to that taken for queued requests:

a. The specified event flag is set.

b. The first word of the I/0 status block, if specified, is
set to SS$ CANCEL if the 1I/0 request is queued or to
SS$_ABORT if the I/O is in progress.

c. The AST, if specified, is queued.

Proper synchronization between this service and the actual
canceling of 1I/0 requests requires the issuing process to
wait for I/0 completion in the normal manner and then note
that the I/0 has been canceled.

2., If the I/0 operation is a virtual I/0 operation involving a
disk or tape ACP, the I/0 cannot be canceled. 1In the case of
a magnetic tape, however, cancellation may occur if the
device driver is hung.

3. Outstanding I/O requests are automatically canceled at image
exit,

For an example of the $CANCEL system service and additional

information on system services that perform device-dependent I/0
operations, see Chapter 6, "Input/Output Services."

22

SCANEXH - CANCEL EXIT HANDLER

$CANEXH

$CANEXH - CANCEL EXIT HANDLER
The Cancel Exit Handler system service deletes an exit «control block
from the 1list of control blocks for the calling access mode. Exit

control blocks are declared by the Declare Exit Handler ($DCLEXH)
system service, and are queued according to access mode in a last-in

first-out order.
Macro Format

SCANEXH [desblk]

High-Level Language Format
SYS$CANEXH ([desblk])

desblk

Address of the control block describing the exit handler to be
canceled. If not specified, or specified as 0, all exit control
blocks are canceled for the current access mode.

Return Status

SS$_NORMAL
Service successfully completed.

S§S$_ACCVIO
The first longword of the exit control block or the first
longword of a previous exit control block in the 1list cannot be
read by the caller, or the first 1longword of the preceding
control block cannot be written by the caller.

SS$_NOHANDLER

Warning. The exit handler specified does not exist.

23

SCANTIM - CANCEL TIMER

$CANTIM

SCANTIM - CANCEL TIMER

The Cancel Timer Request system service cancels all or a selected
subset of the Set Timer requests previously issued by the current
image executing in a process. Cancellation is based on the request
identification specified in the Set Timer (SSETIMR) system service.
If more than one timer request was given the same request
identification, they are all canceled.

Macro Format

SCANTIM [reqidt] , [acmode]

High-Level Language Format
SYSSCANTIM([reqidt] , [acmode])

reqidt
Request identification of the timer request(s) to be canceled. A
value of 0 (the default) indicates that all timer requests are to

be canceled.

acmode
Access mode of the request(s) to be canceled. The access mode is
maximized with the access mode of the caller. Only those timer

requests issued from an access mode equal to or less privileged
than the resultant access mode are canceled.

Return Status
SS$_NORMAL

Service successfully completed.

Privilege Restrictions

Timer requests can be canceled only from access modes equal to or
more privileged than the access mode from which the requests were
issued.

Resources Required/Returned
Canceled timer requests are restored to the process's quota for
timer queue entries (TQELM quota).

Notes

Outstanding timer requests are automatically canceled at image
exit.

For an example of the SCANTIM system service and additional

information on timer scheduled requests, see Chapter 8, "Timer and
Time Conversion Services."

24

$CANWAK - CANCEL WAKEUP

$CANWAK

$CANWAK - CANCEL WAKEUP

The Cancel Wakeup system service removes all scheduled wakeup requests
for a process from the timer queue, including those made by the caller
or by other processes. Scheduled wakeup requests are made with the
Schedule Wakeup ($SCHDWK) system service.

Macro Format

SCANWAK (pidadr] ,[prcnam]

High-Level Language Format
SYSSCANWAK ([pidadr] , [prcnam])
pidadr

Address of a longword containing the process identification of
the process for which wakeups are to be canceled.

prcnam

Address of a character string descriptor pointing to the process
name string. The process name is implicitly qualified by the
group number of the process issuing the cancel wakeup request.
If neither a process identification nor a process name 1is specified,
scheduled wakeup requests for the caller are canceled. For details on

how the service interprets the PIDADR and PRCNAM arguments, see Table
7-1 in Chapter 7, "Process Control Services."

Return Status

SS$_NORMAL
Service successfully completed.

SS$_ACCVIO
The process name string or string descriptor cannot be read by
the caller, or the process identification cannot be written by
the caller.

SS$_IVLOGNAM

The process name string has a length of 0 or has more than 15
characters.

SS$_NONEXPR

Warning. The specified process does not exist, or an invalid
process identification was specified.

SS$_NOPRIV

The process does not have the privilege to cancel wakeups for the
specified process.

25

$CANWAK - CANCEL WAKEUP

Privilege Restrictions

User privileges are required to cancel scheduled wakeup requests
for:

e Other processes in the same group (GROUP privilege)

e Any other process in the system (WORLD privilege)

Resources Required/Returned

Canceled wakeup requests are restored to the process's AST 1limit
quota (ASTLM).

Notes

1. Pending wakeup requests issued by the current image are
automatically canceled at image exit.

2. This service only cancels wakeup requests that have been
scheduled; it does not cancel wakeup requests made with the
Wake Process ($WAKE) system service,

For an example of the $CANWAK system service, see Chapter 8, "Timer

and Time Conversion Services." For more information on process
hibernation and waking, see Chapter 7, "Process Control Services."

26

SCLREF - CLEAR EVENT FLAG

$CLREF

SCLREF - CLEAR EVENT FLAG

The Clear Event Flag system service sets an event flag in a 1local or
common event flag cluster to 0.

Macro Format

SCLREF efn

High-Level Language Format
SYSSCLREF (efn)
efn

Number of the event flag to be cleared.

Return Status
S§S$_WASCLR

Service successfully completed. The specified event flag was
previously 0.

SS$_WASSET

Service successfully completed. The specified event flag was
previously 1.

SS$_ILLEFC
An illegal event flag number was specified.
SS$_UNASEFC

The process is not associated with the cluster containing the
specified event flag.

Notes

For an example of the $CLREF system service, see Chapter 3,
"Event Flag Services."

27

$CMEXEC - CHANGE TO EXECUTIVE MODE

$CMEXEC

$CMEXEC - CHANGE TO EXECUTIVE MODE

The Change to Executive Mode system service allows a process to change
its access mode to executive, execute a specified routine, and then
return to the access mode in effect before the call was issued.

Macro Format

SCMEXEC routin ,[arglst]

High-Level Language Format
SYSSCMEXEC (routin , [arglst])
routin
Address of the routine to be executed in executive mode.
arglst
Address of the argument list to be supplied to the routine, 1if
any.
Return Status
SS$_NOPRIV

The process does not have the privilege to change mode to
executive.

All other values returned are from the routine executed.

Privilege Restrictions

A process can call this service if it has the user privilege
CMEXEC and 1is currently executing in either executive or kernel
mode.

Notes

1. The SCMEXEC system service uses standard procedure calling
conventions to pass control to the specified routine. If no
argument list 1is specified, the argument ©pointer (AP)
contains a 0, unless it is modified by the caller. (However,
to conform to the VAX-11 procedure calling standard, you must
not omit the ARGLIST arqgument.) The routine must exit with a
RET instruction.

2. The specified routine should place a status value in RO
before returning.

28

$CMKRNL - CHANGE TO KERNEL MODE

$CMKRNL

SCMKRNL - CHANGE TO KERNEL MODE

The Change to Kernel Mode system service allows a process to change
its access mode to kernel, execute a specified routine, and then
return to the access mode in effect before the call was issued.

Macro Format

SCMKRNL routin ,[arglst]

High-Level Language Format
SYSSCMKRNL (routin ,[arglst])
routin
Address of the routine to be executed in kernel mode.
arglst
Address of the argument list to be supplied to the routine, if
any.
Return Status
SS$_NOPRIV
The process does not have the privilege to change mode to kernel.

All other values returned are from the routine executed.

Privilege Restrictions

A process cah call this service if it has the wuser privilege
CMKRNL and 1is currently executing in either executive or kernel
mode.

Notes

1. The $CMKRNL system service uses standard procedure calling
conventions. to pass control to the specified routine. 1If no
argument 1list 1is specified, the argument pointer (AP)
contains a 0, unless it is modified by the caller. (However,
to conform to the VAX-1l procedure calling standard, you must
not omit the ARGLIST argument.) The routine must exit with a
RET instruction.

2. The specified routine should place a status value in RO
before returning.

29

$CNTREG - CONTRACT PROGRAM/CONTROL REGION

$CNTREG

$CNTREG - CONTRACT PROGRAM/CONTROL REGION

The Contract Program/Control Region system service deletes a specified
number of pages from the current end of the program or control region
of a process's virtual address space. The deleted pages become
inaccessible; any references to them cause access violations.

Macro Format

SCNTREG pagcent ,[retadr] ,[acmode] ,[region]

High-Level Language Format
SYSSCNTREG (pagcnt , [retadr] ,[acmode] ,[regionl)
pagcnt

Number of pages to be deleted from the current end of the program
or control region.

retadr

Address of a 2-longword array to receive the virtual addresses of
the starting page and ending page of the deleted area.

acmode
Access mode of the owner of the pages to be deleted. The
specified access mode is maximized with the access mode of the
caller.

region
Region indicator. A value of 0 (the default) indicates that the
program region (PO region) is to be contracted, and a value of 1
indicates that the «control region (Pl region) 1is to be
contracted.

Return Status

SS$_NORMAL
Service successfully completed.

SS$_ACCVIO
The return address array cannot be written by the caller.

SSS_ILLPAGCNT
The specified page count was less than 1.

SS$_PAGOWNVIO

A page in the specified range 1is owned by a more privileged
access mode.

30

Notes

$CNTREG - CONTRACT PROGRAM/CONTROL REGION

If an error occurs while deleting pages, the return range, if
requested, indicates the pages that were successfully deleted
before the error occurred. If no pages were deleted, both
longwords in the return address array contain a -1.

The SCNTREG system service can delete pages only from the
current end of the process's program or control region. To
delete a specific range of pages in either region, use the
Delete Virtual Address Space ($DELTVA) system service.

For an example of the $CNTREG system service and additional details on

page

creation and deletion, see Section 10.2, "Increasing and

Decreasing Virtual Address Space."

31

S$CRELOG - CREATE LOGICAL NAME

$CRELOG

SCRELOG -~ CREATE LOGICAL NAME

The Create Logical Name system service inserts a logical name and 1its
equivalence name into the process, group, or system logical name
table. If the logical name already exists in the respective table,
the new definition supersedes the old.

Macro Format

S$CRELOG [tblflg] ,lognam ,eqlnam , [acmode]

High-Level Language Format
SYSSCRELOG ([tbl1flg) ,lognam ,eqlnam , [acmode])

tblflg
Logical name table number. A value of 0 indicates the system
table (this 1is the default value), 1 indicates the group table,
and 2 indicates the process logical name table.

lognam

Address of a character string descriptor pointing to the 1logical
name string.

eqglnam

Address of a character string descriptor pointing to the
equivalence name string.

acmode
Access mode to be associated with the logical name table entry.
Access modes only qualify names 1in the process logical name
table. The specified access mode is maximized with the access
mode of the caller.

Return Status

SS$_NORMAL

Service successfully completed. A new name was entered 1in the
specified logical name table.

SS$_SUPERSEDE

Service successfully completed. A new equivalence name replaced
a previous equivalence name in the specified logical name table,

SS$_ACCVIO

The logical name or equivalence name string or string descriptor
cannot be read by the caller.

32

SCRELOG - CREATE LOGICAL NAME

§S$_INSFMEM
Insufficient system dynamic memory is available to allocate a
group or system logical name table entry or the process has
exceeded its limit for process logical name table entries. The
code 1is only returned if the process has disabled resource wait
mode with the Set Resource Wait Mode (SSETRWM) system service.
SS$_IVLOGNAM

The logical name or equivalence name string has a length of 0, or
has more than 63 characters,

SS$_IVLOGTAB
An invalid logical name table number was specified.

SS$_NOPRIV
The process does not have the privilege to place an entry in the
specified logical name table.

Privilege Restrictions
The user privileges GRPNAM and SYSNAM are required to place
entries in the group and system logical name tables,
respectively.

Resources Required/Returned
1. Up to 5 pages of memory are available in the control region

of a process's virtual address space to store names in the

process logical name table.

2, Creation of logical names for the group and system 1logical
name tables requires system dynamic memory.

Notes

Logical names can also be created from the command stream, with
the ASSIGN, DEFINE, ALLOCATE, and MOUNT commands.

For examples of the SCRELOG system service and details on logical name
translation and deletion, see Chapter 5, "Logical Name Services."

33

$CREMBX - CREATE MAILBOX AND ASSIGN CHANNEL

$CREMBX

SCREMBX - CREATE MAILBOX AND ASSIGN CHANNEL
The Create Mailbox and Assign Channel system service creates a virtual
mailbox device named MBn: and assigns an I/0 channel to it. The
system provides the unit number, n, when it creates the mailbox. 1If a
mailbox with the specified name already exists, the $CREMBX service
assigns a channel to the existing mailbox.
Macro Format

SCREMBX [prmflg] ,chan ,[maxmsg] ,[bufquo] , [promsk]

, [acmode] ,[lognam]}

High-Level Language Format

SYS$CREMBX ([prmflg] ,chan ,[maxmsg] , [bufquo] , [promsk]
, [acmode] , [lognam])

prmflg
Permanent indicator. A value of 1 indicates that a permanent
mailbox is to be created. The logical name, if specified, is
entered in the system logical name table. A value of 0 (the
default) indicates a temporary mailbox. The logical name, if
specified, is entered in the group logical name table.

chan
Address of a word to receive the channel number assigned.

maxmsg
Number indicating the maximum size of messages that can be sent
to the mailbox. If not specified, or specified as 0, the system
provides a default value.

bufquo
Number of bytes of system dynamic memory that can be used to
buffer messages sent to the mailbox. For a temporary mailbox,
this value must be less than or equal to the process buffer
quota. If not specified, or specified as 0, the system provides
a default value.

promsk
Numeric value representing the protection mask for the mailbox.

The mask contains four 4-bit fields:

15 1 7 3 0

WORLD GROUP OWNER SYSTEM

34

$CREMBX - CREATE MAILBOX AND ASSIGN CHANNEL

Bits, which are read from right to left in each field, indicate
when they are cleared that read, write, execute and delete
access, in that order, are granted to the particular category of
user.

Only read access and write access are meaningful for mailbox
protection,

If not specified, or specified as 0, read access and write access
are granted to all users.

acmode

Access mode to be associated with the channel to which the
mailbox is assigned. The access mode is maximized with the
access mode of the caller.

lognam

Address of a character string descriptor pointing to the 1logical
name string for the mailbox. (Section 6.13.1 explains the format
of this string.) The logical name 1is entered into the group
logical name table (if it is a temporary mailbox) or the system
logical name table (if it is a permanent mailbox). In either
case, the MBn: name is entered as the equivalence name (the
first character in the equivalence name string is an underline
character [_1). Processes can use the logical name to assign
other I/0 channels to the mailbox.

Return Status
SS$_NORMAL
Service successfully completed.

S§S$_ACCVIO

The logical name string or string descriptor cannot be read by
the <caller, or the channel number cannot be written by the
caller.

SSS_EXPORTQUOTA

The process has exceeded the number of mailboxes that processes
on this port of the multiport (shared) memory can create.

SS5$_EXQUOTA
The process has exceeded its buffered I/0 byte count quota.
S§S$_INSFMEM

Insufficient system dynamic memory is available to complete the
service.

SS$_INTERLOCK

The bit map lock for allocating mailboxes from the specified
shared memory is locked by another process.

35

$CREMBX - CREATE MAILBOX AND ASSIGN CHANNEL

SS$_IVLOGNAM

The logical name string has a length of 0 or has more than &3
characters.

SS$_NOIOCHAN
No I/0 channel is available for assignment.
SS$_NOPRIV

The process does not have the privilege to create a temporary
mailbox, a permanent mailbox, or a mailbox in memory that is
shared by multiple processors.

S§S$_NOSHMBLOCK

No shared memory mailbox cdontrol block is available to wuse to
create a new mailbox.

SSS_SHMNOTCNCT

The shared memory named in the LOGNAM string is not known to the
system. This error can be caused by a spelling error in the
string, an improperly assigned logical name, or the failure to
identify the memory as shared at SYSGEN time.

SS$_TOOMANYLNAM

Logical name translation of the LOGNAM string exceeded the
allowed depth.

Privilege Restrictions

The user privileges TMPMBX and PRMMBX are required to create
temporary and permanent mailboxes, respectively.

The user privilege SHMEM is required to create a mailbox in
memory that is shared by multiple processors.

Resources Required/Returned

1. System dynamic memory is required for the allocation of a
device data base for the mailbox and for ‘an entry in the
logical name table, if a logical name is specified.

2. When a temporary mailbox is created, the process's buffered
I/0 byte count (BYTLM) quota is reduced by the amount
specified in the BUFQUO argument. The size of the mailbox
unit control block and the logical name (if one is specified)
are also subtracted from the quota. The quota is returned to
the process when the mailbox is deleted.

36

Notes

SCREMBX - CREATE MAILBOX AND ASSIGN CHANNEL

After a mailbox is created, the creating process and other
processes can assign additional channels to it by calling the
Assign I/O Channel (SASSIGN) system service, The system
maintains a reference count of the number of channels
assigned to a mailbox; the count 1is decreased whenever a
channel is deassigned with the Deassign I/0O Channel ($DASSGN)
system service or when the image that assigned the channel
exits., If it is a temporary mailbox, it is deleted when
there are no more channels assigned. A permanent mailbox
must be explicitly marked for deletion with the Delete
Mailbox ($DELMBX) system service, and is then deleted when no
more channels are assigned to it.

A mailbox is treated as a shareable device; it cannot,
however, be mounted or allocated.

Mailboxes are assigned sequentially increasing unit numbers
(from 1 to a maximum of 65,535) as they are created. When
all unit numbers have been used, the system starts numbering
again at unit 1.

A process can obtain the unit number of the created mailbox

by <calling the Get I/0 Channel Information (SGETCHN) system
service.

Default values for the maximum message size and the buffer
quota (an appropriate multiple of the message size) are
determined for a specific system during system generation.
However, for termination mailboxes the maximum message size
must be at 1least as large as the termination message
(currently 84 bytes).

The reason S$CREMBX simply assigns a channel if the mailbox
already exists 1is to remove the need for cooperating
processes to be concerned over which process must execute
first to create the mailbox. If a temporary mailbox is being
created, SCREMBX implicitly qualifies the mailbox name with
the group number to check whether the mailbox already exists.
In other words, there can be only one mailbox per group with
the same name. For permanent mailboxes, there can be only
one mailbox with a particular name. However, there can be a
permanent mailbox and group mailboxes with the same name,

For an example of mailbox creation and input/output operations to it,
see Section 6.13, "Mailboxes."

37

$CREPRC - CREATE PROCESS

$CREPRC

$CREPRC - CREATE PROCESS

The Create Process system service allows a process to create another
process., The created process can be either a subprocess or a detached
process.,

A detached process is a fully independent process. For example, the
process that the system creates when a user logs in is a detached
process. A subprocess, on the other hand, is related to 1its creator
in a tree-like structure; it receives a portion of the creating
process's resource quotas and must terminate before the creating
process. The specification of the UIC argument controls whether the
created process is a subprocess or a detached process.

Macro Format

SCREPRC [pidadr] ,[image] ,[input]l ,[output] ,[error]
, [prvadr] ,[quotal ,[prcnam] ,[baspri] ,[uic]
, [mbxunt] ,[stsflg]

High-Level Language Format

SYSSCREPRC ([pidadr] ,[image] ,[input] ,[output] ,([error]
, [prvadr] ,[quota] ,([{prcnam] ,[baspri] ,[uic]}
, [mbxunt] ,[stsflg])

pidadr

Address of a 1longword to receive the process identification
number assigned to the created process.

image

Address of a character string descriptor pointing to the file
specification of the image to be activated 1in the created
process. The image name can have a maximum of 63 characters.

input

Address of a character string descriptor pointing to the
equivalence name string to be associated with the logical name
SYSSINPUT in the logical name table for the created process. The
equivalence name string can have a maximum of 63 characters.

output

Address of a character string descriptor pointing to the
equivalence name string to be associated with the logical name
SYSSOUTPUT in the logical name table for the created process.
The equivalence name string can have a maximum of 63 characters,

error
Address of a character string descriptor pointing to the
equivalence name string to be associated with the logical name

SYSSERROR in the logical name table for the created process. The
equivalence name string can have a maximum of 63 characters.

38

prvadr

Address of a 64-bit mask defining privileges for the created
process. The mask is formed by setting the bits corresponding to

$CREPRC - CREATE PROCESS

specific privileges (see Section 7.3.4 for an example).

$PRVDEF macro

settings:

Name

PRVSV_ALLSPOOL

PRV$V_BUGCHK
PRV$V_BYPASS
PRV$V_CMEXEC
PRV$V_CMKRNL
PRVSV_DETACH

PRV$V DIAGNOSE

PRVSV_EXQUOTA
PRV$V_GROUP
PRV$V_GRPNAM

PRV$V_LOG_IO
PRV$V_MOUNT

PRVSV_NETMBX
PRVSV_NOACNT

PRV$V_OPER

PRV$V_PFNMAP
PRV$V_PHY IO
PRV$V_PRMCEB

PRVS$V_PRMGBL
PRVSV_PRMMBX
PRVSV_PSWAPM
PRV$V_SETPRI
PRVSV_SETPRV
PRVS$V_SHMEM

PRVS$V_SYSGBL
PRVSV_SYSNAM
PRV$V_SYSPRV

PRVSV_TMPMBX
PRV$V_VOLPRO
PRVSV_WORLD

defines

Privilege

Allocate a spooled device

Make bug check error log entries

Bypass UIC-based protection

Change mode to executive

Change mode to kernel

Create detached processes

Diaghose devices

Exceed quotas

Group process control

Place name in group logical

name table

Perform logical I/O operations

Issue mount volume QIO

Create a network device

Create processes for which no accounting is
done

All operator privileges

Map to section by physical page frame number
Perform physical I/O operations

Create permanent common

event flag clusters

Create permanent global sections

Create permanent mailboxes

Change process swap mode

Set any process priority

Set any process privileges

Allocate structures in memory shared by
multiple processors

Create system global sections

Place name in system logical name table

Access files and other resources as if you have

a system UIC

Create temporary mailboxes
Override volume protection
World process control

The user privilege SETPRV is required to grant a process

privileges other

of the creating process,

than one's own.

not have are not granted but no error status code is returned.

Address of a list of values assigning resource quotas to

created process.
specified as 0,
resource quotas.

The format of the quota list and considerations for specifying
described later in this section, under the
heading "Format of the Quota List." The specific quotas, their
defaults, and their minimum values, are listed under the heading

quota values

If no address is specified, or the address is
the system supplies default values for

"Quota Descriptions."

39

the following symbolic names for the bit

If the caller does not have
this privilege, the mask is minimized with the current privileges
that is, any privileges the creator does

$CREPRC - CREATE PROCESS

prcnam

Address of a character string descriptor pointing to a 1- to
l15-character process name string to be assigned to the created
process. The process name is implicitly qualified by the group
number of the caller, if a subprocess is created, or by the group
number in the UIC argument, if a detached process is created.

baspri

Numeric value indicating the base priority to be assigned to the
created process. The priority must be in the range of 0 to 31,
where 31 is the highest priority 1level and 0 1is the lowest.
Normal priorities are in the range 0 through 15, and real-time
priorities are in the range 16 through 31.

If not specified, the base priority for the created process is 2
for VAX-11l MACRO and VAX-11 BLISS-32 and 0 for other languages.

The user privilege SETPRI is required to set a priority higher
than one's own. If the caller does not have this privilege, the
specified base priority is compared with the caller's priority
and the lower of the two values is used.

uic
Numeric value representing the user identification code (UIC) of
the created process. This argument also indicates whether a
process is a subprocess or a detached process.
If not specified, or specified as 0 (the default), it indicates
that the created process is a subprocess; the subprocess has the
same UIC as the creator.
If a nonzero value is specified, it indicates that the created
process is a detached process. The specified value is
interpreted as a 32-bit octal number, with two 16-bit fields:
bits 0-15 member number
bits 16-31 group number
The user privilege DETACH 1is required to create a detached
process.
mbxunt

Unit number of a mailbox to receive a termination message, when
the created process is deleted. If not specified, or specified
as 0 (the default), the system sends no termination message when
it deletes the process. The format of the message is described
in Note 2 below.

40

stsflg

$CREPRC -~ CREATE PROCESS

32-bit status flag indicating options selected for the «created
process. The flag bits, when set, have the following meanings:

Bit Meaning
0 Disable resource wait mode
1 Enable system service failure exception mode
2 Inhibit process swapping (PSWAPM privilege required)
3 Do not perform accounting (NOACNT privilege required)
4 Batch (non-interactive) process
5 Force process to hibernate before it executes the
image
6 Provide detached process executing LOGINOUT.EXE with
authorization file attributes of the creator; do not
check authorization file
7 Process is a network connect object (NETMBX privilege
required)
8-31 Reserved. These bits must be 0.

Return Status

SS$_NORMAL

Service successfully completed.

SSS_ACCVI
The
desc
call

§S$_DUPLN

The
with

S§S$_EXQUO

1.

20

SS$_INSFM
Insu
serv
Set

SS$_IVLOG

The
char

0

caller cannot read a specified input string or string
riptor, the privilege 1list, or the quota list., Or, the
er cannot write the process identification,

AM

process name specified duplicates one already specified
in that group.

TA

The process has exceeded 1its quota for the creation of
subprocesses.

A quota value specified for the «creation of a subprocess
exceeds the creator's corresponding quota; or, the quota is
deductible and the remaining quota for the creator would be
less than the minimum.

EM

fficient system dynamic memory is available to complete the
ice and the process has disabled resource wait mode with the
Resource Wait Mode (SSETRWM) system service.

NAM

specified process name has a length of 0 or has more than 15
acters.

SS$_IVQUOTAL

The quota list is not in the proper format.

41

SCREPRC - CREATE PROCESS

SS$_IVSTSFLG

A reserved status flag was set.

SS$_NOPRIV
The caller has violated one of the privilege restrictions 1listed
below.

SS$_NOSLOT
No process control block or swap slot 1is available, In other
words, the maximum number of processes that can exist

concurrently in the system has been reached.

Privilege Restrictions

User privileges are required to:

Create detached processes (DETACH privilege)

Set a created subprocess's base priority higher than one's own
(ALTPRI privilege)

Grant a process user privileges that the caller does not have
(SETPRV privilege)

Disable either process swap mode (PSWAPM privilege) or
accounting functions (NOACNT privilege) for the «created
process

Create a network connect object (NETMBX privilege)

Resources Required/Returned

1.

Notes

The number of subprocesses that a process can create |is
controlled by the subprocess quota (PRCLM); the quota amount
is returned when a subprocess is deleted.

The Create Process system service requires system dynamic
memory.

When a subprocess is created, the value of any deductible
quota 1is subtracted from the total value the creator has
available; and when the subprocess is deleted, the unused
portion of any deductible quota is added back to the total
available to the creator. Any pooled quota value 1is shared
by the creator and all its subprocesses. "Deductible" and
"pooled" quotas are defined later in this section wunder the
heading "Quota Descriptions." 1Information about how quotas
are determined at process creation appears later under the
heading "Quota Values."

Some error conditions are not detected until the created
process executes,. These conditions include an invalid or
nonexistent image; invalid SYSSINPUT, SYSSOUTPUT, or
SYSSERROR logical name equivalences; and inadequate quotas
or insufficient privilege to execute the requested image.

42

SCREPRC - CREATE PROCESS

If a mailbox unit is specified, the mailbox is not used until
the created process actually terminates. At that time, a
SASSIGN system service is issued for the mailbox 1in the
context of the terminating process and an accounting message
is sent to the mailbox. If the mailbox no longer exists,
cannot be assigned, or is full, the error is treated as if no
mailbox had been specified.

The message is sent before the process rundown 1is initiated
but after the process name has been set to null. Thus, a
significant interval of time can occur between the sending of
the termination message and the final deletion of the
process.

To receive the message, the caller must issue a read to the
mailbox. When the I/0 completes, the second longword of the
I/0 status block, if one is specified, contains the process
identification of the deleted process.

Symbolic names for offsets of fields within the accounting
message are defined in the S$ACCDEF macro. The offsets, their
symbolic names, lengths, and the contents of each field are
listed below.

Offset Name Length Contents
0 ACC$SW MSGTYP word MSG$_DELPROC
2 - word not used
4 ACCSL_FINALSTS longword Exit status code
8 ACCSL_PID longword Process identification
12 longword Not used
16 ACCSQ_TERMTIME quadword Current time in system
format at process
termination
24 ACCST_ACCOUNT 8 bytes Account name for
process, blank filled
32 ACCST USERNAME 12 bytes User name, blank filled
44 ACCSL_CPUTIM longword CPU time used by the
process, in
10-millisecond units
48 ACCSL_PAGEFLTS longword Number of page faults

incurred by the process
in its lifetime

52 ACCSL_PGFLPEAK longword Peak paging file usage
56 ACCSL_WSPEAK longword Peak working set size
60 ACCSL_BIOCNT longword Count of buffered 1I/0

operations performed by
the process

64 ACCSL_DIOCNT longword Count of direct 1/0

operations performed by
the process

68 ACCSL VOLUMES longword Count of volumes mounted
- by the process

72 ACCSQ LOGIN quadword Time in system format
- that process logged in

80 ACCSL OWNER longword Process identification
- of owner

The length of the termination message 1is equated to the
constant ACC$SK_TERMLEN,

All subprocesses created by a process must terminate before
the creating process can be deleted. If subprocesses exist
when their creator 1is deleted, they are automatically
deleted.

43

$CREPRC - CREATE PROCESS

For examples of subprocess creation, termination mailboxes, and system
services that control the execution of processes, see Chapter 7,
"Process Control Services."

Format of the Quota List

The system defines specific resources that are controlled by quotas.
A quota limits the use of a particular system resource by a process.

The quota list addressed by the QUOTA argument of the SCREPRC system
service consists of consecutive quota values contained in longwords,
each preceded by a byte that indicates the quota type.

The S$PQLDEF macro defines symbolic names for the quotas in the format:
PQLS_type

The quota 1list is terminated by the type code PQLS_LISTEND. For
example, a quota list may be specified as:

QLIST: JRYTE FAL$.FPRCLM o LIMIT NUMBER OF SURPROCESSES
+LONG 2 #ooMAX = 2 BURFROCESSES

+BYTE POLS..ASTLM o LIMIT NUMBRER OF ASTS

+LONG & o MAX = & OUTSTANDING ASTS

JRBYTE FRL$.LISTEND $ END OF QUOTA LIST

Quota Descriptions

The individual quota types are described below. Each description also
indicates the following characteristics of the quota:

e Minimum value. A process cannot be created if it does not
have a quota equal to or greater than this minimum.

e Default value. If the quota list does not specify a value for
a particular quota, the system assigns the process this
default value.

e Deductible/Pooled/Nondeductible.

Deductible quotas: When a subprocess is <created, the value
for a deductible quota 1is subtracted from the creator's
current quota, and 1is returned to the «creator when the
subprocess is deleted. (Quotas are never deducted from the
creator when a detached process 1is created.) There is
currently only one deductible quota, the CPU time limit.

Pooled quotas: These quotas are established when a detached
process is created, and are shared by that process and all its
descendent subprocesses. Charges against pooled quota values
are subtracted from the current available totals as they are
used, and are added back to the total when they are not being
used.

Non-deductible quotas: These quotas are established and
maintained separately for each process and subprocess.

Note that the minimum and default values listed are not necessarily
those provided at your installation; they are, however, the values
recommended for general use,

The explanation under the heading "Quota Values," which appears later
in this section, describes how these characteristics may affect quota
assignments.

44

$CREPRC -~ CREATE PROCESS

PQL$_ASTLM

AST limit. This quota restricts both the number of outstanding
AST routines specified in system service calls that accept an AST
address and the number of scheduled wakeup requests that can be
issued. :

Minimum: 2
Default: 6
Non-deductible

PQLS_BIOLM

Buffered I/0 limit, This quota limits the number of outstanding
system-buffered I/0 operations. A buffered I/0 operation is one
which uses an intermediate buffer from the system pool rather
than a buffer specified in a process's $QIO request.

Minimum:
Default:
Non-deductible

2
6

PQL$_BYTLM

Buffered 1/0 byte count quota. This quota limits the amount of
system space that can be wused to buffer I/O operations or to
create temporary mailboxes.

Minimum: 1024
Default: 8192
Pooled

PQLS_CPULM

CPU time limit. This quota can be used to limit the total amount
of CPU time used by a process., If the quota is specified as 0,
there is no CPU time limit; the creating process, however, must
have wunlimited CPU time itself 1in order to grant the created
process unlimited time.

If specified, the CPU time limit must be specified in units of 10
milliseconds. This quota is consumable; when the time limit has
been used, the process is deleted. If a subprocess 1is given
limited CPU time, the amount of time used is not returned to the
creator when the subprocess is deleted.

Minimum: 0

Default: 0

Deductible
PQL$_DIOLM

Direct I/O0 quota. This quota limits the number of outstanding
direct 1I/0 operations. A direct I/0 operation is one for which
the system locks the pages containing the associated 1I/0 buffer
in memory for the duration of the I/0 operation.

Minimum:

2
Default: 6
Non-deductible

45

$CREPRC - CREATE PROCESS

PQLS_FILLM

Open file quota. This quota limits the number of files that a
process can have open at one time.

Minimum: 2
Default: 10
Pooled

PQL$_PGFLQUOTA

Paging file quota. This quota limits the number of pages that
can be used to provide secondary storage in the paging file for a
process's execution,

Minimum: 256

Default: 2048

Pooled
PQLS$_PRCLM

Subprocess quota. This quota limits the number of subprocesses a
process can create.

Minimum: 0
Default: 8
Pooled

PQL$_TQELM

Timer queue entry quota. This quota limits both the number of
timer queue requests a process can have outstanding and the
creation of temporary common event flag clusters.

Minimum: 0
Default: 8
Pooled

PQL$_WSDEFAULT

Default working set size. This quota defines the number of pages
in the default working set for any image executed by the process.
The maximum size that can be specified for this quota 1is
determined by the working set size quota.

Minimum: 10
Default: 100
Non-deductible

PQL$S WSQUOTA
Working set size quota. This quota limits the maximum size to
which an image can expand its working set size with the Adjust
Working Set Limit (SADJWSL) system service.
Minimum: 10

Default: 120
Non-deductible

46

$CREPRC -~ CREATE PROCESS

Quota Values

Values specified in the quota list are not necessarily the quotas that
will actually be assigned to the created process. The SCREPRC system
service performs the following steps to determine the quota values
that will be assigned:

1.

2.

It constructs a default quota 1list for the process being
created, assigning it the default values for all quotas.

It reads the specified quota list, if any, and updates the
corresponding items 1in the default list. If the quota list
contains multiple entries for a quota, only the last
specification is used.

For each item in the updated quota 1list, it compares the
gquota value with the minimum value required for the quota and
uses the larger value.

If a subprocess is being created:

1. The resulting value is compared with the current value of
the corresponding quota of the creator. If the value
exceeds the creator's quota, the status code SSS_EXQUOTA
is returned and the subprocess is not created.

2. If the quota is a deductible quota, it deducts the
resulting value from the creator's quota and verifies
that the creator will still have at 1least the minimum
quota required. If not, the status code SS$ EXQUOTA is
returned and the subprocess is not created. -

3. Pooled quota values are ignored.
If a detached process is created, the resulting values are
not compared with the creator's, nor are quotas deducted.

Moreover, the service does not check that a specified quota
value exceeds the maximum allowed by the system.

47

$CRETVA - CREATE VIRTUAL ADDRESS SPACE

$CRETVA

$CRETVA - CREATE VIRTUAL ADDRESS SPACE

The Create Virtual Address Space system service adds a range

of

demand-zero allocation pages to a process's virtual address space for

the execution of the current image.

Macro Format

SCRETVA inadr ,[retadr] ,[acmode]

High-Level Language Format

SYSSCRETVA(inadr ,[retadr] ,[acmode])

inadr

Address of a 2-longword array containing the starting and ending
virtual addresses of the pages to be created. If the starting

and ending virtual addresses are the same, a single page

is

created. Only the wvirtual page number portion of the virtual

addresses is used; the low-order 9 bits are ignored.

retadr

Address of a 2-longword array to receive the starting and ending

virtual addresses of the pages actually created.

acmode

Access mode and protection for the new pages. The specified

access mode 1is maximized with the caller's access mode.

The

protection of the pages is read/write for the resultant access

mode and those more privileged.

Return Status
SS$_NORMAL

Service successfully completed.
SS$_ACCVIO

The input address array cannot be read by the caller, or
return address array cannot be written by the caller.

SS$_EXQUOTA
The process has exceeded its paging file quota.
SS$_INSFWSL

The process's working set 1limit 1is not large enough
accommodate the increased size of the virtual address space,

SS$_NOPRIV

A page in the specified range is in the system address space.

48

the

to

$CRETVA - CREATE VIRTUAL ADDRESS SPACE

SS$_PAGOWNVIO

A page in the specified range already exists and can not be

deleted because it is owned by a more privileged access mode than
that of the caller.

§S$_VASFULL

The process's virtual address space 1is full; no space is
available in the page tables for the requested pages.

Resources Required/Returned

The processes paging file quota (PGFLQUOTA) and working set limit
quota (WSQUOTA) must be sufficient to accommodate the increased
size of the virtual address space.

Notes

1. Pages are created starting at the address contained in the
first longword of the 1location addressed by the parameter
INADR and ending with the second 1longword. The ending
address can be lower than the starting address. The return
address array indicates the byte addresses of the pages
created.

2. 1If an error occurs while creating pages, the return array, if
requested, indicates the pages that were successfully created
before the error occurred. If no pages were created, both
longwords of the return address array contain a -1.

3. If SCRETVA creates pages that already exist, the service
deletes those pages if they are not owned by a more
privileged access mode than that of the «caller. Any such
deleted pages are reinitialized as demand-zero pages.

The Expand Program/Control Region ($EXPREG) also adds pages to a
process's virtual address space. For additional details on page
creation and deletion, see Section 10.2, "Increasing and Decreasing
Virtual Address Space."

49

$CRMPSC - CREATE AND MAP SECTION

$CRMPSC

$CRMPSC ~ CREATE AND MAP SECTION

The Create and Map Section system service creates and/or maps a
section. A section can be a disk file section or a page frame
section. A disk file section is data or code from a disk file that
can be brought into memory and made available, either only to the
process that creates it (private section) or to all processes that map
to it (global section). A page frame section consists of one or more
page frames in physical memory or I/0 space; such sections are
discussed in Section 10.6.13.

Creating a disk file section involves defining all or part of a disk
file as a section. Mapping a disk file section involves making a
correspondence between virtual blocks in the file and pages in the
caller's wvirtual address space. If the $CRMPSC.service specifies a
global section that already exists, the service maps it.

Depending on the actual operation requested, certain arguments are
required or optional. Table 1 summarizes how the SCRMPSC system
service interprets the arguments passed to it, and under what
circumstances it requires or ignores arguments.

Macro Format

SCRMPSC [inadr] ,[retadr] ,[acmode] ,[flags] ,[gsdnam] ,[ident]
¢ [relpag] ,[chan] ,[pagcnt] , [vbn] ,[prot] ,[pfc]

High-Level Language Format

SYSSCRMPSC ([inadr] ,[retadr] ,[acmode] ,[flags] ,[gsdnam] ,[ident]
,[relpag] , [chan] ,[pagcnt] , [vbn] , [prot] ,[pfc])

inadr

Address of a 2-longword array containing the starting and ending
virtual addresses 1in the process's virtual address space into
which the section is to be mapped. 1If the starting and ending
virtual addresses are the same, a single page is mapped (except
when the SECSM EXPREG bit is set in the FLAGS argument). Only
the virtual page number portion of the virtual addresses is used;
the low-order 9 bits are ignored.

If the SECSM_EXPREG bit 1is set in the FLAGS argument, the
addresses specified in the INADR argument simply determine
whether the section is mapped in the program' (P0O) or control (Pl)
region.

If this argument is not specified, or specified as 0, the section
is not mapped.

retadr

Address of a 2-longword array to receive the stérting and ending
virtual addresses of the pages into which the section was
actually mapped.

50

$CRMPSC - CREATE AND MAP SECTION

acmode

Access mode to be the owner of the ©pages created during the

mapping. The access mode is maximized with the access mode of
the caller.

T

flags

Mask defining the section type and characteristics. This mask is
the logical OR of the flag bits you wish to set. The $SECDEF
macro defines symbolic names for the flag bits in the mask.
Their meanings and the default values they override are:

Flag Meaning Default Attribute

SECSM GBL Global section Private section

SECSM CRF Pages are copy-on-reference Pages are shared

SECSM:DZRO Pages are demand-zero pages Pages are not zeroed
when copied

SEC$M_EXPREG Map into first Map into range

available space specified by INADR

argument

SECSM WRT Read/write section Read-only

SEC$M_PERM Permanent Temporary

SECSM_PFNMAP Page frame section Disk file section

SECSM_SYSGBL System global section Group global section

gsdnam

Address of a character string descriptor pointing to the text
name string for the global section. (Section 10.6.5.1 explains
the format of this text name string.) For group global sections,
the global section name is implicitly qualified by the group
number of the process creating the global section.

ident

Address of a quadword indicating the version number of a global
section, and, for processes mapping to an existing global
section, the criteria for matching the identification.

The version number is in the second longword. The version number
contains two fields: a minor identification in the low-order 24
bits and a major identification in the high-order 8 bits. Values
for these fields can be assigned by installation convention to
differentiate versions of global sections. If no version number
is specified when a section is created, processes that specify a
version number when mapping cannot access the global section.

The first longword specifies, in its 1low-order 3 bits, the
matching criteria. The wvalid values, symbolic names by which
they can be specified, and their meanings are:

Value/Name Match Criteria

0 SECSK_MATALL Match all versions of the section

1 SECSK_MATEQU ~° Match only if major and minor identifications
match

2 SECSK_MATLEQ Match if the major identifications are equal
and the minor identification of the mapper is
less than or equal to the minor

identification of the global section

51

SCRMPSC - CREATE AND MAP SECTION

The match control field is ignored when a section is mapped at
creation time. If no address is specified, or is specified as 0

(the default), the version number and match control fields
default to 0.

relpag

Relative page number within the section of the first page in the
section to be mapped. If this argument is not specified or is
specified as 0 (the default), the global section is mapped
beginning with the first wvirtual block in the file. This
argument must be 0 for demand-zero sections in memory shared by
multiple processors.

chan
Number of the channel on which the file has been accessed. The
file must have been accessed with an RMS $OPEN macro; the file
options parameter (FOP) in the FAB must indicate a user file open
(UFO keyword). The access mode at which the channel was opened
must be the same or less privileged than the access mode of the
caller.

pagcnt

vbn

prot

Number of pages in the section. The specified page count Iis
compared with the number of pages in the section file; 1if they
are different, the lower value is used. If the page count is not
specified or 1is specified as 0 (the default), the size of the
section file is used. However, for physical page frame sections,
this argument must not be 0.

Virtual block number in the file that marks the beginning of the
section, If this argument is not specified or is specified as 0
(the default), the section is created beginning with the first
virtual block in the file.

If you specified page frame number mapping (by setting the
SEC$M_PFNMAP flag), this argument specifies the page frame number
where the section begins in memory.

Numeric value representing the protection mask to be applied to
the global section.

The mask contains four 4-bit fields:

15 11 7 3 0

WORLD GROUP OWNER SYSTEM

Bits read from right to left in each field, when clear, indicate
that read, write, execute, and delete access, in that order, are
granted to the particular category of user.

Only read access and write access are meaningful for section
protection.

If not specified, or specified as 0, read access and write access
are granted to all users.

52

$CRMPSC - CREATE AND MAP SECTION

pfc
Page fault cluster size. If specified, the cluster size
indicates how many pages are to be brought into memory when a
page fault occurs for a single page. This argument is not wused
for physical page frame sections or for global sections in memory
shared by multiple processors.
Table 1
Arguments for the SCRMPSC System Service
Create and Create and
Map Global Map Globall Map Private
Argument Section Section Section
INADR Optional2 Required Required
RETADR Optional Optional Optional
ACMODE Optional Optional Optional
FLAGS
SECSM_GBL Required Ignored -—
SEC$M_CRF3 Optional Not used Optional
SEC$M_DZRO3 Optional Not used Optional
SECSM_EXPREG Optional Optional Optional
SECSM_PERM Optional? Not used Not used
SECSM_PFNMAP Optional Not used Not used
SECSM_SYSGBL Optional Optional Not used
SECSM_WRT Optional Optional Optional
GSDNAM Required Required Not used
IDENT Optional Optional Not used
RELPAG3 Optional Optional Not used
CHAN3 Required Required
PAGCNT Required Required
VBN3 Optional Optional
PROT Optional Not used
prc3 Optional4 Optional
1. The Map Global Section ($MGBLSC) system service maps an existing

global section.,

2. INADR can be omitted only if you wish to <create but not map a
global section; however, in such a case you must make the section
permanent, because temporary sections are automatically deleted when
no processes are mapped to them. INADR cannot be omitted for
demand-zero sections in memory shared by multiple processors.

3. For physical page frame sections: VBN specifies the starting page
frame number; RELPAG, CHAN, and PFC are not used; the SECSM_CRF and
SECSM_DZRO flag bit settings are invalid.

4. This argument is not used for global sections in memory shared by
multiple processors.

53

$CRMPSC ~ CREATE AND MAP SECTION

Return Status
SS$_NORMAL

Service successfully completed. The specified global section
already existed and has been mapped.

§S$_CREATED

Service successfully completed. The specified global section did
not previously exist and has been created.

SS$_ACCVIO
The input address array or the global section name or name
descriptor cannot be read, or the return address array cannot be
written, by the caller.

SS$_ENDOFFILE

Warning. The starting virtual block number specified is beyond
the logical end-of-file,

' 55$_EXPORTQUOTA
The process has exceeded the number of global sections that
processes on this port of the multiport (shared) memory can
create.

§S$_GPTFULL

There is no more room in the system global page table to. set up
page table entries for the section.

SS$_GSDFULL

There is no more room in the system space allocated to maintain
control information for global sections.

SS$_EXQUOTA

The process exceeded 1its paging file quota while creating
copy-on-reference pages.

SS$_ILLPAGCNT

The page count value is negative, or is zero for a physical page
frame section.

SS$_INSFMEM

Not enough pages are available in the specified shared memory to
create the section.

SS$_INSFWSL

The process's working set 1limit 1is not 1large enough to
accommodate the increased size of the address space.

S5S5$_INTERLOCK

The bit map 1lock for allocating global sections from the
specified shared memory is locked by another process.

54

$CRMPSC - CREATE AND MAP SECTION

SS$_IVCHAN

An invalid channel number was specified, that is a channel number
of 0 or a number larger than the number of channels available.

SS$_IVCHNLSEC
The channel number specified is currently active.
SS$_IVLOGNAM

The specified global section name has a length of 0, or has more
than 15 characters.

§S$_IVSECFLG

An invalid flag has been specified: a reserved flag, a flag
requiring a privilege you 1lack, or an invalid combination of
flags.

SS$_IVSECIDCTL

The match control field of the global section identification is
invalid.

SS$_NOTFILEDEV

The device is not a file-oriented, random-access, or directory
device,

SS8$_NOPRIV

The process does not have the privilege to create a system global
section (SYSGBL) or a permanent group global section (PRMGBL).

The process does not have the privilege to create a section
starting at a specific physical page frame number (PFNMAP).

The process does not have the privilege to create a global
section in memory shared by multiple processors (SHMEM).

A page in the input address range is in the system address space.

The specified channel does not exist or was assigned from a more
privileged access mode.

SS$_NOSHMBLOCK
No shared memory control block for global sections is available.
S5$_PAGOWNVIO

A page in the specified input address range is owned by a more
privileged access mode.

SS$_SECTBLFUL

There are no entries available in the system global section
table.

55

SCRMPSC - CREATE AND MAP SECTION

SS$_SHMNOTCNCT

The shared memory named in the GSDNAM string is not known to the
system, This error can be caused by a spelling error in the
string, an improperly assigned logical name, or the failure to
identify the memory as shared at SYSGEN time.

SS$_TOOMANYLNAM

Logical name translation of the GSDNAM string exceeded the
allowed depth.

SS$_VASFULL

The process's virtual address space 1is full; no space is

available in the page tables for the pages created to contain the
mapped global section.

Privilege Restrictions

The user privilege SYSGBL is required to create a system global
section; the PRMGBL privilege is required to create a permanent
global section.

The user privilege PFNMAP 1is required to create a section
starting at a specific page frame number. However, the PFNMAP
privilege is not required to map to an existing global section at
a specific page frame number,

The user privilege SHMEM is required to create a global section
in memory that 1is shared by multiple processors. However, the
SHMEM privilege is not required to map to an existing global
section in memory shared by multiple processors.

Resources Required/Returned

The process's working set 1limit quota (WSQUOTA) must be
sufficient to accommodate the increased size of the virtual
address space when mapping a section., If the section pages are
copy-on-reference, the process must also have sufficient paging
file quota (PGFLQUOTA).

Notes

1. When the $CRMPSC system service maps a section, it calls the
Create Virtual Address Space (SCRETVA) system service to add
the pages specified by the INADR argument or requested by the
SECS$SM EXPREG flag bit setting to the process's virtual
address space. The virtual addresses can be in the program
(P0) region or the control (Pl) region.

The S$CRMPSC system service returns the virtual addresses of
the pages created in the RETADR argument, if specified. The
section is mapped from a low address to a high address,
regardless of whether the section is mapped in the program or
control region.

56

$CRMPSC ~ CREATE AND MAP SECTION

2, If an error occurs during the mapping of a global section,
the return address array, if specified, indicates the pages
that were successfully mapped when the error occurred. If no
pages were mapped, both longwords of the return address array
contain -1.

If the global section is permanent, it is not deleted if the
mapping operation fails.

3. The SEC$M PFNMAP flag setting identifies the memory for the
section as starting at the page frame number specified in the
VBN argument and extending for the number of pages specified
in the PAGCNT argument. Setting the SEC$M PFNMAP flag places
these restrictions on the following arguments:

RELPAG - Does not apply

CHAN - Does not apply

PAGCNT - Must be specified; cannot be zero

VBN - Specifies first page frame to be mapped

PFC - Does not apply

Setting the SEC$M_PFNMAP flag also places restrictions on
these other flag values:

SECSM_CRF - Must be 0
SECSM_DZRO - Must be 0.

For examples of the <creation and mapping of private and global
sections, see Section 10.6, "Sections."

57

$DACEFC - DISASSOCIATE COMMON EVENT FLAG CLUSTER

$DACEFC

SDACEFC - DISASSOCIATE COMMON EVENT FLAG CLUSTER

The Disassociate Common Event Flag Cluster system service releases the
calling process's association with a common event flag cluster,

Macro Format

SDACEFC efn

High-Level Language Format
SYS$DACEFC (efn)
efn

Number of any event flag in the common cluster to be
disassociated. The flag number must be in the range of 64
through 95 for cluster 2 and 96 through 127 for cluster 3.

Return Status
SS$_NORMAL

Service successfully completed.
SS$_ILLEFC

An illegal event flag number was specified. The number must be
in the range of event flags 64 through 127.

SS$_INTERLOCK

The bit map lock for allocating common event flag clusters from
the specified shared memory is locked by another process.

Notes

1. The count of processes associated with the cluster |is
decreased for each process that disassociates. When the
image that associated with a cluster exits, the system
performs anh implicit disassociate for the cluster. When the
count of processes associated with a temporary cluster or
with a permanent cluster that is marked for deletion reaches
zero, the cluster is automatically deleted.

2. If a process issues this service specifying an event flag
cluster with which it 1is not associated, the service
completes successfully.

For an example of the SDACEFC system service and a description of the

creation and association of common event flag clusters, see Section
3.4, "Common Event Flag Clusters."

58

$DALLOC - DEALLOCATE DEVICE

$DALLOC

$DALLOC - DEALLOCATE DEVICE
The Deallocate Device system service deallocates a previously

allocated device. Exclusive use by the 1issuing process |is
relinquished and other processes can assign\or allocate the device.

Macro Format

$SDALLOC [devnam] , [acmode]

High-Level Language Format
SYSSDALLOC ([devnam] , [acmodel])

devnam

Address of a character string descriptor pointing to the device
name string. The string may be either a physical device name or
a logical name. 1If the first character in the string is an
underline character (_), the name is considered a physical device
name. Otherwise, a single level of logical name translation is
performed and the equivalence name, if any, is used. The final
name, however, cannot contain a node name unless the name is that
of the host system.

If no device name is specified, all devices allocated by the
process from access modes equal to or less privileged than that
specified are deallocated.

acmode

Access mode on behalf of which the deallocation is to be
performed. The access mode is maximized with the access mode of
the caller.

Return Status

SS$_NORMAL
Service successfully completed.

SS$_ACCVIO

-

The device name string or string descriptor cannot be read by the
caller.

SS$_DEVASSIGN

Warning. The device cannot be deallocated because the process
still has channels assigned to it.

S§S$_DEVNOTALLOC

Warning. The device is not allocated to the requesting process.

59

$DALLOC - DEALLOCATE DEVICE

SS$_IVDEVNAM

No device name string was specified or the device name string
contains invalid characters.

SS$_IVLOGNAM

The device name string has a length of 0 or has more than 63
characters.

55$_NOPRIV
The device was allocated from a more privileged access mode.
SS$_NOSUCHDEV

Warning. The specified device does not exist in the host system.

Privilege Restrictions

An allocated device can be deallocated only from access modes
equal to or more privileged than the access mode from which the
original allocation was made.

Notes

1. A process cannot deallocate a device at any time. 1If, at the
time of deallocation, the issuing process has one or more I/0
channels assigned to the device, the device remains
allocated.

2. The system automatically deallocates all devices that were
allocated at user mode at image exit.

3. If an attempt is made to deallocate a mailbox, success is
returned but no operation is performed.

For an example of how to use this service and additional notes on
device allocation, see Section 6.9, "Device Allocation."

60

$DASSGN - DEASSIGN I/0 CHANNEL

$DASSGN

SDASSGN - DEASSIGN I/O CHANNEL

The Deassign I/0 Channel system service releases an I/0 channel
acquired for input/output operations with the Assign I/0 Channel
(SASSIGN) system service,

Macro Format

$DASSGN chan

High-Level Language Format
SYS$DASSGN (chan)

chan

Number of the I/O channel to be deassigned.

Return Status
SS$_NORMAL
Service successfully completed.

SS$_IVCHAN

An invalid channel number was specified; that 1is, a channel

number of 0 or a number larger than the number of channels
available.

SS$_NOPRIV

The specified channel is not assigned, or was assigned from a
more privileged access mode.

Privilege Restrictions

An I/0 channel can be deassigned only from an access mode equal
to or more privileged than the access mode from which the
original channel assignment was made.

Notes

1. When a channel is deassigned, any outstanding I/0 requests on
the channel are canceled. If a file is open on the specified
channel, the file is closed.

2. If a mailbox was associated with the device when the channel
was assigned, the linkage to the mailbox is cleared.

3. If the I/O channel was assigned for a network operation, the
network link is disconnected. For more information on
channel assignment and deassignment for network operations,
see the DECnet-VAX User's Guide.

61

SDASSGN - DEASSIGN I/O CHANNEL

4., If the specified channel is the last channel assigned to a
device that has been marked for dismounting, the device is
dismounted.

5. I/0 channels assigned from user mode are automatically
deassigned at image exit.

For an example of the $DASSGN system service and additional

information® on channel assignment, see Section 6.1, “Assigning
Channels,"

62

$DCLAST - DECLARE AST

$DCLAST

$DCLAST - DECLARE AST

The Declare AST system service queues an AST for the calling or for a
less privileged access mode., . For example, a routine executing in
supervisor mode can declare an AST for either supervisor or user mode.

Macro Format

S$DCLAST astadr ,l[astprm] ,[acmode]

High-Level Language Format
SYSSDCLAST (astadr , [astprm] , [acmode])
astadr
Address of the entry mask of the AST service routine.
astprm
Value to be passed to the AST routine as an argument, if any.
acmode
Access mode for which the AST is to be declared. This access
mode is maximized with the access mode of the caller. The
resultant mode is the access mode for which the AST is declared.
Return Status
S§S$_NORMAL
Service successfully completed.
SS$_EXQUOTA
The process has exceeded its AST limit quota.
SS$_INSFMEM
Insufficient system dynamic memory is available to complete the
service, and the process has disabled resource wait mode with the
Set Resource Wait Mode ($SETRWM) system service.
Resources Required/Returned

1. The Declare AST system service requires system dynamic
memory.

2. This service uses the process's AST limit quota (ASTLM).

63

SDCLAST - DECLARE AST

Notes

1. The $DCLAST system service does not validate the address of
the AST service routine. 1If an illegal address, for example,
an address of 0, is specified, an access violation occurs
when the AST service routine is given control.

For an example of the $DCLAST system service and notes and coding

conventions for AST service routines, see Chapter 4, "Asynchronous
System Trap (AST) Services."

64

$DCLCMH - DECLARE CHANGE MODE OR COMPATIBILITY MODE HANDLER

$DCLCMH

$DCLCMH - DECLARE CHANGE MODE OR COMPATIBILITY MODE HANDLER

Declare Change Mode or Compatibility Mode Handler ($SDCLCMH) system
service establishes the address of a routine to receive control when
(1) a Change Mode to User or Change Mode to Supervisor instruction
trap occurs, or (2) a compatibility mode fault occurs.

Macro Format

$DCLCMH addres , [prvhnd] , [type]

High-Level Langquage Format
SYSSDCLCMH (addres , [prvhnd] , [typel)
addres

Address of a routine to receive control when a change mode trap
or a compatibility mode fault occurs. An address of 0 clears a
previously declared handler.

prvhnd

Address of a longword to receive the address of a previously
declared handler.

type

Type indicator. If specified as 0 (the default), a change mode
handler 1is declared for the access mode at which the request is
issued. 1If specified as 1, a compatibility mode handler is
declared.

Return Status
SS$_NORMAL

Service successfully completed.

SS$_ACCVIO

The longword to receive the address of the previous change mode
handler cannot be written by the caller.

Notes

1. A change mode handler provides users with a dispatching
mechanism similar to that used for system service calls. It
allows a routine that executes in supervisor mode to be
called from user mode. The change mode handler is declared
from supervisor mode; when the process is then executing in
user mode and issues a Change Mode to Supervisor instruction,
the change mode handler receives control, and executes in
supervisor mode.

65

$DCLCMH - DECLARE CHANGE MODE OR COMPATIBILITY MODE HANDLER

2.

4.

Compatibility mode handlers are used by the operating system
to bypass normal condition handling procedures when an image
executing in compatibility mode incurs a compatibility mode
exception.

When the change mode or compatibility mode handler receives
control, the stack pointer points to the change mode code
specified in the change mode instruction or the compatibility
exception type code. On exit, the handler must remove the
code from the stack, then relinquish control with an REI
instruction.

A change mode handler can be declared only from user or
supervisor modes.

66

$DCLEXH - DECLARE EXIT HANDLER

$DCLEXH

$DCLEXH - DECLARE EXIT HANDLER

The Declare Exit Handler system service describes an exit handling
routine to receive control when an image exits. 1Image exit normally
occurs when the image currently executing in a process returns control
to the operating ' system. Image exit may also occur when the Exit
(SEXIT) or Force Exit (SFORCEX) system services are called.

Macro Format

SDCLEXH desblk

High-Level Language Format
SYSSDCLEXH (desblk)
desblk

Address of a control block describing the exit handler. The exit
control block has the format:

31 8 7 0

forward link

exit handler address

address to store reason for exit

additional arguments
- for exit handler, ~
if any

The system fills in the first longword.

Return Status
S§S$_NORMAL

Service successfully completed.
S8$_ACCVIO

The first longword of the exit control block cannot be written by
the caller.

SS$_NOHANDLER

Warning. No exit handler control block address was specified, or
the address specified is 0.

67

Notes

3.

$DCLEXH - DECLARE EXIT HANDLER

Exit handlers are described by exit control blocks. The
operating system maintains a separate list of these control
blocks for user, supervisor, and executive modes. The
SDCLEXH system service adds the description of an exit
handler to the front of one of these lists. The actual 1list
to which the exit control block is added is determined by the
access mode of the caller.

This service can only be called from wuser, supervisor, and
executive modes.

At image exit, the exit handlers declared from user mode are
called first; they are called 1in the reverse order from
which they were declared.

Each exit handler 1is. executed only once; it must be
redeclared before it can be executed again. The exit
handling routine is called as a normal procedure with the
argument 1list specified in the 3rd through nth longwords of
the exit control block. The first argument is the address of
a longword to receive a system status code indicating the
reason for exit; the system always fills in this 1longword
before calling the exit handler.

The Cancel Exit Handler (SCANEXH) removes an exit control
block from the list.

For an example of an exit control block and a description of the

actio
Exit.

n

the system takes when an image exits, see Section 7.6, "Image

68

$DELLOG - DELETE LOGICAL NAME

$DELLOG

$DELLOG - DELETE LOGICAL NAME

The Delete Logical Name system service deletes a logical name and its
equivalence name from the process, group, or system logical name
table.

Macro Format

SDELLOG [tblflg] ,[lognam] , [acmode]

High-Level Language Format
SYSSDELLOG ([tbl£flg] ,[lognam] ,[acmode])
tblflg

Logical name table number. A value of 0 (the default) indicates
the system table, 1 indicates the group table, and 2 indicates
the process table.

lognam

Address of a character string descriptor pointing to the logical
-name string. If omitted, all 1logical names the process is
privileged to delete in the specified table are deleted.

acmode

Access mode associated with the process logical name table entry.
The specified access mode is maximized with the access mode of
the caller; only the 1logical name entered at the resulting
access mode or a less privileged access mode is deleted. This
argument is used only for deleting names from the process logical
name table.

Return Status

SS$_NORMAL
Service successfully completed.

SS$_ACCVIO

The logical name string or string descriptor cannot be read by
the caller.

S§S5$_IVLOGNAM

The logical name string has a length of 0, or has more than 63
characters.

SS$_IVLOGTAB

An invalid logical name table number was specified.

69

$DELLOG - DELETE LOGICAL NAME

SS$_NOLOGNAM

Either (1) the specified logical name does not exist 1in the
specified 1logical name table, or (2) the specified logical name
exists in the process logical name table but the entry was made
from a more privileged access mode,

SS$_NOPRIV

The process does not have the privilege to delete an entry from
the specified logical name table.

Privilege Restrictions

The user privileges GRPNAM and SYSNAM are required to delete
names from the group and system 1logical name tables,
respectively.

Resources Required/Returned

1. Deletion of a logical name from the group or system table
returns storage to system dynamic memory.

2, When a logical name is deleted from the process logical name
table, the number of bytes in the control region of the
process's virtual address space required to maintain the
table entry become available for other process logical name
table entries.

1. VLogical names can be deleted from the command stream with the
DEASSIGN command.

2. Names in the process logical name table that were created
from user mode are automatically deleted at image exit.

For an example of the $DELLOG system service and additional details on

logical name creation and translation, see Chapter 5, "Logical Name
Services."

70

SDELMBX - DELETE MAILBOX

$DELMBX

$DELMBX - DELETE MAILBOX

The Delete Mailbox system service marks a permanent mailbox for
deletion, The actual deletion of the mailbox and of its associated
logical name assignment occur when no more I/0 channels are assigned
to the mailbox.

Macro Format

SDELMBX chan

High-Level Language Format
SYSSDELMBX (chan)
chan

Number of the channel assigned to the mailbox.

Return Status
SS$_NORMAL
Service successfully completed.
SS$_DEVNOTMBX
The specified channel is not assigned to a mailbox.
SS$_INTERLOCK

The bit map lock for allocating mailboxes from the specified
shared memory is locked by another process.

SS$_IVCHAN

An invalid channel number was specified, that 1is, a channel
number of 0 or a number larger than the number of channels
available.

SS$_NOPRIV

The specified channel is not assigned to a device; the process
does not have the privilege to delete a permanent mailbox or a
mailbox in memory shared by multiple processors; or the access
mode of the caller is less privileged than the access mode from
which the channel was assigned.

Privilege Restrictions

1. The user privilege PRMMBX is required to delete a -permanent
mailbox.

2. The user privilege SHMEM is required to delete a mailbox
located in memory that is shared by multiple processors.

71

3.

Notes

$DELMBX - DELETE MAILBOX

A mailbox can be deleted only from an access mode equal to or

more privileged than the access mode from which the mailbox
channel was assigned.

Temporary mailboxes are automatically deleted when their
reference count goes to zero.

The $DELMBX system service does not deassign the channel
assigned by the caller, if any. The caller must deassign the

channel with the Deassign I/0 Channel (SDASSGN) system
service.

For information on the creation and use of mailboxes, see Section
6.13, "Mailboxes."

72

SDELPRC - DELETE PROCESS

$DELPRC

SDELPRC - DELETE PROCESS

The Delete Process system service allows a process to delete itself or
another process.

Macro Format

$DELPRC [pidadr] , [prcnam]

High-Level Language Format
SYSSDELPRC ([pidadr] , [prcnam])
pidadr

Address of a longword containing the process identification of
the process to be deleted.

prcnam

Address of a character string descriptor pointing to the process
name string. The process name is implicitly qualified by the
group number of the process issuing the delete.

If neither a process identification nor a process name 1is specified,
the caller is deleted and control is not returned. For details on how
the service interprets the PIDADR and PRCNAM arguments, see Table 7-1
in Chapter 7, "Process Control Services."
Return Status
SS$_NORMAL

Service successfully completed.

5S$_ACCVIO

The process name string or string descriptor cannot be read by
the caller, or the process identification cannot be written by
the caller.

SS$_INSFMEM

Insufficient system dynamic memory is available to complete the
service and the process has disabled resource wait mode with the
Set Resource Wait Mode ($SETRWM) system service.

SS$_NONEXPR

Warning. The specified process does not exist, or an invalid
process identification was specified.

SS$_NOPRIV

The process does not have the privilege to delete the specified
process,

73

SDELPRC - DELETE PROCESS

Privilege Restrictions

User privileges are required to delete:

Other processes in the same group (GROUP privilege)

Any process in the system (WORLD privilege)

Resources Required/Returned

l.

The Delete Process system service requires system dynamic
memory.

Deductible resource quotas granted to subprocesses are
returned to the creator when the subprocesses are deleted.

When a subprocess is deleted, a termination message is sent to
its creator, provided that the mailbox to receive the message
still exists and the creating process has access to the
mailbox. The termination message 1s sent before the final
rundown is initiated; thus, the creator may receive the
message before the process deletion is complete.

Due to the complexity of the required rundown operations, a
significant time interval occurs between a delete request and
the actual disappearance of the process. The Delete Process
service, however, returns immediately after initiating the
rundown operation. If subsequent delete requests are issued
for a process currently being deleted, the requests return
immediately with a return status code indicating successful
completion.

For a complete list of the actions performed by the system when it

deletes

a process, see Sections 7.6, "Image Exit," and 7.7, "Process

Deletion."

74

SDELTVA - DELETE VIRTUAL ADDRESS SPACE

" $DELTVA

SDELTVA - DELETE VIRTUAL ADDRESS SPACE

The Delete Virtual Address Space system service deletes a range of
addresses from a process's virtual address space. Upon successful
completion of the service, the deleted pages are inaccessible; any
references to them cause access violations.

Macro Format

SDELTVA inadr ,[retadr] ,[acmode]

High-Level Language Format
SYSS$SDELTVA(inadr ,[retadr] ,[acmode])

inadr
Address of a 2-longword array containing the starting and ending
virtual addresses of the pages to be deleted. 1If the starting
and ending virtual addresses are the same, a single page |is
deleted. Only the virtual page number portion of the virtual
addresses is used; the low-order 9 bits are ignored.

retadr

Address of a 2-longword array to receive the starting and ending
virtual addresses of the pages actually deleted.

acmode
Access mode on behalf of which the service is to be performed.
The specified access mode is maximized with the access mode of
the caller. The resultant access mode is wused to determine
whether the caller can actually delete the specified pages.
Return Status
SS$_NORMAL
Service successfully completed.

S§S$_ACCVIO

The input address array cannot be read by the caller, or the
return address array cannot be written by the caller.

SS$_NOPRIV
A page in the specified range is in the system address space.
SS$_PAGOWNVIO

A page in the specified range is owned by an access mode more
privileged than the access mode of the caller.

75

$DELTVA - DELETE VIRTUAL ADDRESS SPACE

Privilege Restrictions

Pages can only be deleted from access modes equal to or more
privileged than the access mode of the owner of the pages.

Notes

1. The $DELTVA system service deletes pages starting at the
address contained in the second longword of the INADR array
and ending at the address in the first longword. Thus, |if
the same address array is used for the Create Virtual Address
Space ($CRETVA) as for the $DELTVA system service, the pages

are deleted in the reverse order from which they were
created.

2. If any of the pages in the specified range have already been
deleted or do not exist, the service continues as if the
pages were successfully deleted.

3. If an error occurs while deleting pages, the return array, if
requested, indicates the pages that were successfully deleted
before the error occurred. If no pages are deleted, both
longwords in the return address array contain a -1.

For an -example of the $DELTVA system service and additional

information on page creation and deletion, see Section 10.2,
"Increasing and Decreasing Virtual Address Space."

76

$DGBLSC ~ DELETE GLOBAL SECTION

$DGBLSC

$DGBLSC - DELETE GLOBAL SECTION

The Delete Global Section system service marks an existing permanent
global section for deletion. The actual’® deletion of the global
section takes place when all processes that have mapped the global
section have deleted the mapped pages.

Macro Format

SDGBLSC [flags] ,gsdnam ,[ident]

High-Level Language Format
SYSSDGBLSC([flags] ,gsdnam ,[ident])
flags

Mask indicating global section characteristics. The only
significant bit used for the deletion of global sections is the
group/system flag. 1If this argument 1is specified as 0 (the
default), it indicates that the global section is a group global
section; 1if specified as SEC$M_SYSGBL, it indicates a system
global section.

gsdnam

Address of a character string descriptor pointing to the text
name string of the global section to be deleted. (Section
10.6.5.1 explains the format of this text name string.) For group
global sections, the global section name is implicitly qualified
by the group number of the caller.

ident

Address of a quadword indicating the version number of the global
section to delete and the matching criteria to be applied.

The version number is in the second longword. The version number
contains two fields: a minor identification in the low-order 24
bits and a major identification in the high-order 8 bits.

The first longword specifies, 1in the low-order 3 bits, the
matching criteria. Their wvalid values, the symbolic names by
which they can be specified, and their meanings are listed below:

Value/Name Match Criteria

0 SECSK_MATALL Match all versions of the section

1 SECSK_MATEQU Match only if major and minor identifications
match

2 SECSK_MATLEQ Match if the major identifications are equal
and the minor identification of the mapper is
less than or equal to the minor

identification of the global section.

If no address is specified or is specified as 0 (the default),
the version number and match control fields default to 0.

77

$DGBLSC ~ DELETE GLOBAL SECTION

Return Status
SS$_NORMAL

Service successfully completed.
SS$_ACCVIO

The global section name or name descriptor or the section
identification field cannot be read by the caller.

SS$_INTERLOCK

The bit map 1lock for allocating global sections from the
specified shared memory is locked by another process.

SS$_IVLOGNAM

The global section name has a length of 0, or has more than 15
characters.

SS$_IVSECFLG

An invalid flag has been specified. Either a reserved flag has
been set, or one requiring a user privilege.

SSS_IVSECIDCTL
The section identification match control field is invalid.
SS$_NOPRIV
The caller does not have the privilege to delete a system global
section (SYSGBL), or does not have read/write access to a group

global section.

The caller does not have the privilege to delete a global section
located in memory that is shared by multiple processors (SHMEM).

SS$_NOSUCHSEC

Warning. The specified global section does not exist, or the
identifications do not match.

SS$ NOTCREATOR

The section is in memory shared by multiple processors, and was
created by a process on another processor.

5SS _SHMNOTCNCT
The shared memory named in the GSDNAM string is not known to the
system. This error can be caused by a spelling error in the
string, an improperly assigned logical name, or the failure to
identify the memory as shared at SYSGEN time.

SSS_TOOMANYLNAM

Logical name translation of the GSDNAM string exceeded the
allowed depth of 10.

78

Privi

Notes

For i
"Sect

$DGBLSC - DELETE GLOBAL SECTION

lege Restrictions

The user privileges SYSGBL and PRMGBL are required to delete
system and permanent global sections, respectively.

The user privilege SHMEM is required to delete a global section
located in memory that is shared by multiple processors.,

The user privilege PFNMAP is required to delete a page frame
section.

l. After a global section has been marked for deletion, any
process that attempts to map it receives the warning return
status code SS$_NOSUCHSEC.

2. Temporary global sections are automatically deleted when the
count of processes using the section goes to 0.

3. This service does not wunmap a section from a process's
virtual address space., When a process no longer requires use
of a section, it can unmap the section by calling the Delete
Virtual Address Space ($SDELTVA) system service to delete the
pages to which the section is mapped.

4. A section located in memory that 1is shared by multiple
processors can be marked for deletion only by a process
running on the same processor that created the section..

nformation on the creation and use of sections, see Section 10.6,
ions."

79

$DLCEFC - DELETE COMMON EVENT FLAG CLUSTER

$DLCEFC

$DLCEFC - DELETE COMMON EVENT FLAG CLUSTER

The Delete Common Event Flag Cluster system service marks a permanent
common event flag cluster for deletion. The cluster is actually
deleted when no more processes are associated with it.

Macro Format

SDLCEFC name

High-Level Language Format
SYSSDLCEFC (name)

name

Address of a character string descriptor pointing to the name of
the cluster. (Section 3.7.1 describes the format of this name
string.) The name is implicitly qualified by the group number of

the caller.
Return Status
SS$_NORMAL
Service successfully completed.

SSS_IVLOGNAM

The cluster name string has a length of 0 or has more than 15
characters.

SS$_NOPRIV

The process does not have the privilege to delete a permanent
common event flag cluster, or the process does not have the
privilege to delete a common event flag cluster in memory shared
by multiple processors.

Privilege ﬁestrictions

The user privilege PRMCEB 1is required to delete a permanent
common event flag cluster, except when the UIC of the caller is
the same as the UIC of the creator of the cluster.

The user privilege SHMEM is required to delete an event flag
cluster in memory shared by multiple processors,

Notes

1. The $DLCEFC system service does not perform an implicit
disassociate request for the caller. A process disassociates
with a cluster by calling the Disassociate Common Event Flag
Cluster (SDACEFC) system service, The system performs an
implicit disassociate for the cluster at image exit.

80

$DLCEFC - DELETE COMMON EVENT FLAG CLUSTER

2. If the cluster has already been deleted or does not exist,
the $DLCEFC service returns the status code SS$_NORMAL.

For an example of creating and using a common event flag cluster, see
Section 3.4, "Common Event Flag Clusters."

81

$EXIT - EXIT

SEXIT

$EXIT - EXIT

The Exit system service is used by the operating system to initiate

image rundown when the current image in a process completes
Control normally returns to the command interpreter.
Macro Format

SEXIT ({code]

High-Level Language Format
SYSSEXIT ([code])

code
Longword value to be saved in the process head
completion status of the current image. If not spe

macro call, a value of 1 is passed as the completion
VAX-11 MACRO and VAX-11 BLISS-32 and a value of 0 is

execution.

er as the
cified in a

code for
passed for

other languages. This value can be tested at the command level

to provide conditional command execution.

Return Status
No status codes are returned by this service because
not returned to the caller; rather, an exit to
interpreter is performed.

Notes

For a complete list of the actions taken by the system
exit, see Section 7.6, "Image Exit."

82

control is
the command

at image

$EXPREG - EXPAND PROGRAM/CONTROL REGION

SEXPREG

$EXPREG - EXPAND PROGRAM/CONTROL REGION

The Expand Program/Control Region system service adds a specified
number of new virtual pages to a process's program region or control
region for the execution of the current image. Expansion occurs at
the current end of that region's virtual address space.

Macro Format

SEXPREG pagcnt ,[retadr] ,[acmode] ,[region]

High-Level Language Format
SYS$EXPREG (pagcent , [retadr] , [acmode] ,[region])
pagcnt

Number of pages to add to the current end of the program or
control region.

retadr

Address of a 2-longword array to receive the starting and ending
virtual addresses of the pages actually added.

acmode
Access mode and protection for the new pages. The specified
access mode is maximized with the access mode of the caller. The
protection of the pages is read/write for the specified access
mode and more privileged access modes.
region
Region indicator. A value of 0 (the default) indicates that the
program region (PO region) is to be expanded. A value of 1
indicates that the control region (Pl region) is to be expanded.
Return Status
SS$_NORMAL
Service successfully completed.
S5$_ACCVIO
The return address array cannot be written by the caller.
SS$_EXQUOTA
The process exceeded its paging file quota.

SSS_ILLPAGCNT

The specified page count was less than 1.

83

SEXPREG - EXPAND PROGRAM/CONTROL REGION

SS$_INSFWSL

The process's working set 1limit 1is not large enough to
accommodate the increased virtual address space. J

SS$_VASFULL

The process's virtual address space 1is full; no space is
available in the process page table for the requested regions.

Resources Required/Returned

The process's paging file quota (PGFLQUOTA) and working set limit
quota (WSQUOTA) must be sufficient to accommodate the increased
size of the virtual address space.

Notes

1. The new pages, which were previously inaccessible to the
process, are created as demand-zero pages.

2. Because the bottom of the user stack is normally 1located at
the end of the control region, expanding the control region
is equivalent to expanding the user stack. The effect is to
increase the available stack space by the specified number of
pages. :

3. The starting address returned is always the first available
page in the designated region; therefore, the ending address
is smaller than the starting address when the control region
is expanded and is larger than the starting address when the
program region is expanded.

4, 1If an error occurs while adding pages, the return address
array, if requested, indicates the pages that were
successfully added before the error occurred. If no pages
were added, both longwords of the return address array
contain a -1.

5. The information returned in the location addressed by the
RETADR argument, if specified, can be used as the input range
to the Delete Virtual Address Space (SDELTVA) system service.
Pages can also be deleted with the Contract Program/Control
Region ($CNTREG) system service.

For an example of the $EXPREG system service and additional

information on creating and deleting pages, see Section 10.2,
"Increasing and Decreasing Virtual Address Space."

84

$FAO - FORMATTED ASCII OUTPUT

$FAO

$FAO - FORMATTED ASCII OUTPUT

The Formatted ASCII Output system service converts binary values into
ASCII characters and returns the converted characters in an output
string. It can be used to:

e Insert variable character string data into an output string

e Convert binary values into the ASCII representations of their
decimal, hexadecimal, or octal equivalents and substitute the
results into an output string.

Syntactical notes, lists of valid FAO directives and parameters, and
examples of using FAO appear later in this section.

The Formatted ASCII Output with List Parameter ($FAOL) macro provides
an alternate way to specify input parameters for a call to the $FAO
system service, The formats for both $FAO and $FAOL appear below,

Macro Format

$FAO ctrstr ,[outlen] ,outbuf ,[pl] ,[p2] ...,[pn]
or
SFAOL ctrstr ,[outlen] ,outbuf ,prmlst

High-Level Language Format

SYS$FAO (ctrstr ,[outlen] ,outbuf ,[pll ,[p2] ...,[pnl)
or
SYSSFAOL (ctrstr , [outlen] ,outbuf ,prmlst)

ctrstr

Address of a character string descriptor pointing to the control
string. The control string consists of the fixed text of the
output string and FAO directives. '

outlen

Address of a word to receive the actual 1length of the output
string returned.

outbuf

Address of a character string descriptor pointing to the output
buffer. The fully formatted output string is returned in this
buffer.

pl - pn

Directive parameters contained in longwords. Depending on the
directive, a parameter may be a value that is to be converted,
the address of the string that is to be inserted, or a length or
argument count, Each directive in the control string may require
a corresponding parameter or parameters.

85

$FAO - FORMATTED ASCII OUTPUT

prmlst

Address of the parameter list of 1longwords to be used as Pl
through Pn for the $FAOL macro. The parameter list may be a data
structure that already exists in a program and from which certain
values are to be extracted.

Return Status
SS$_BUFFEROVF

Service successfully completed. The formatted output string
overflowed the output buffer and has been truncated.

SS$_NORMAL
Service successfully completed.
SS$_BADPARAM

An invalid directive was specified in the FAO control string.

Notes

1. The $FAO_S macro form uses a PUSHL instruction for all
parameters (Pl through Pn) coded on the macro instruction;
if a symbolic address is specified, it must be preceded with
a number sign (#) character or loaded into a register.

2. A maximum of 20 parameters can be specified on the $FAO macro
instruction. If more than 20 parameters are required, use
the $FAOL macro.

3. The $FAO system service executes at the access mode of the
caller and does not check whether address arguments are
accessible before it executes. Therefore, an access
violation causes an exception condition if an input field
cannot be read or an output field cannot be written. Note
that an access violation can occur if an invalid length is
specified for an argument, or if an FAO parameter 1is coded
incorrectly.

4. This service does not check the length of the argument 1list,
and therefore cannot return the SS$ INSFARG (insufficient
arguments) error status code. If the service does not
receive enough arguments (for example, if you omit required
commas in the call), you might not get the desired result.

FAO Directives
An FAO directive has the format:
1DD

! (exclamation mark) indicates that the following character or
characters are to be interpreted as an FAO directive.

DD is a 1= or 2-character code indicating the action that FAO is
to perform. Each directive may require one or more input
parameters on the call to $FAO0. All directive codes for FAO
must be specified in uppercase letters.

86

$FAO - FORMATTED ASCII OUTPUT

Optionally, a directive may include:
® A repeat count
e An output field length

A repeat count is coded as follows:
{n (DD)

where n is a decimal value instructing FAO to repeat the directive for
the specified number of parameters.

An output field length is specified as follows:
!lengthDD

where "length" is a decimal value instructing FAO to place the output
resulting from a directive into a field of "length" characters in the
output string.

A directive may contain both a repeat count and an output 1length, as
shown below:

In({(lengthDD)

Repeat counts and output field lengths may be specified as variables,
by wusing a # (number sign) in place of an absolute numeric value. 1If
a # is specified for a repeat count, the next parameter passed to FAO
must contain the count. If a # is specified for an output field
length, the next parameter must contain the length value.

If a variable output field length is specified with a repeat count,
only one 1length parameter is required; each output string will have
the specified length.

FAO Control String and Parameter Processing

An FAO control string may be any length and may contain any number of
FAO directives. The only restriction is on the use of the !
character (ASCII code "X21) in the control string. If a literal ! |is
required in the output string, the directive !! provides an escape.

When FAO processes a control string, each character that is not part
of a directive is written into the output buffer. When a directive is
encountered, it is validated; 1if it is not a wvalid directive, FAO
terminates and returns an error status code. If the directive is
valid, and if it requires one or more parameters, the next consecutive
parameters specified are analyzed and processed.

FAO reads parameters from the argument list; it does not check the
number of arguments it has been passed. If there are not enough
parameters coded in the argument list, FAO will continue reading past
the end of the list., It is your responsibility, when coding a call to
SFAO, to ensure that there are -enough parameters to satisfy the
requirements of all the directives in the control string.

Table 2 summarizes the FAO directives and 1lists the parameter(s)
required by each directive, Table 3 summarizes how FAQ determines the
length of each output field in the <control string as it processes
directives and substitutes character strings in the control string
while formatting the output buffer.

Examples in the next subsection, "FAO Examples," describe in more
detail how to use FAO.

87

$FAO - FORMATTED ASCII OUTPUT

Table 2
Summary of FAO Directives

Directive Function Parameter(s)l
Character String Substitution
IAC Inserts a counted ASCII string Address of the string;
the first byte must
contain the length
tAD Inserts an ASCII string 1) Length of string
2) Address of string
1AF Inserts an ASCII string; 1) Length of string
Replaces all nonprintable 2) Address of string

ASCII codes with periods (.)

IAS

Inserts an ASCII string

Address of quadword
character string
descriptor pointing
to the string

Numeric Conversion (zero-filled)

a byte to octal

10B Converts Value to be converted to
1OW Converts a word to octal ASCII representation
10L Converts a longword to octal
For byte or word
IXB Converts a byte to hexadecimal conversion, FAO uses only
IXW Converts a word to hexadecimal ‘the low-order byte or
XL Converts a longword to hexadecimal word of the longword
parameter
12B Converts an unsigned decimal byte
1ZwW Converts an unsigned decimal word
t2L Converts an unsigned decimal longword

Numeric Conversion (blank-filled)

1UB Converts an unsigned decimal byte Value to be converted to
1UW Converts an unsigned decimal word ASCII representation

1UL Converts an unsigned decimal longword

!1SB Converts a signed decimal byte For byte or word

ISW Converts a signed decimal word conversion, FAO uses only
ISL Converts a signed decimal longword the low-order byte or

word of the longword
parameter

1. If a variable repeat count and/or a variable output field length is
the count and/or length must precede other parameters

directive,

parameters

required by the directive.

indicating

88

specified with a

$FAO - FORMATTED ASCII OUTPUT

Table 2 (Cont.)
Summary of FAO Directives

Directive Function Parameter(s)1

Output String Formatting

1/ Inserts new line (CR/LF) None
' Inserts a tab
[Inserts a form feed

1 Inserts an exclamation mark

138 Inserts the letter S if most recently
converted numeric value is not 1

18T Inserts the system time Address of a quadword time
value to be converted to
ASCII. If 0 is specified,
the current system time is

used.
18D Inserts the system date and time
In< Defines output field width of n None
> characters. All data and
directives within delimiters are left-
justified and blank-filled within
the field
In*c Repeats the specified character in the
output string n times
Parameter Interpretation
1- Reuses last parameter in- the list None

1+ Skips the next parameter in the list

l. If a variable repeat count and/or a variable output field length is specified with a
directive, parameters indicating the count and/or length must precede other parameters
required by the directive.

89

$FAO - FORMATTED ASCII OUTPUT

Table 3
How FAO Determines Output Field Lengths and Fill Characters

Conversion
/Substitution Type

Action When Explicit
Output Field Length is

Longer than Default

Action When Explicit
Output Field Length is
Shorter than Default

Hexadecimal
Byte
Word
Longword

Octal
Byte
wWord
Longword

Signed or Unsigned
Decimal

Unsigned Zero-filled
Decimal

ASCII String
Substitution

2 (zero-filled)
4 (zero-filled)
(zero-filled)

8

3 (zero-filled)
6 (zero-filled)

11

As
as

As
as

Length of input
character string

(zero-filled)

many characters
necessary

many characters
necessary

ASCII result is right-
justified and blank-
filled to the specified
length

Hexadecimal or octal
output is always zero-
filled to the default
output field length then
blank~filled to specified
length

ASCII result is right-
justified and hlank-filled
to the specified length

ASCII result is right-
justified and zero-filled
to the specified length

ASCII string is left-
justified and blank-filled
to the specified length

ASCII result is
truncated on the
left

Signed and unsigned
decimal output fields
are completely filled
with asterisks(*)

ASCII string is
truncated on the
right

90

FAO EXAMPLES

FAO Examples

Each of the examples on the following pages shows an FAO control
string with several directives, parameters defined as input for the
directives, and the calls to $FAO to format the output strings. The
numbered examples illustrate:

1. S$FAO macro, !AC, lAS, !AD, and !/ directives

2, SFAO macro, !!, and IAS directives, repeat count, output
field length

3. S$FAO macro, UL, !XL, !SL directives
4, S$FAOL macro, !UL, !XL, !SL directives
5. $FAOL macro, !UB, !XB, !SB directives

6. SFAO macro, !XW, !ZW, !- directives, repeat count, output
field length

7. $FAOL macro, !AS, !UB, !%S, !- directives, variable repeat
count

8. SFAO macro, !n*c (repeat character), !%D directives

9. $FAO macro, !%D and !%T (with output field lengths), !n¥*
(with variable repeat count)

10. $FAO macro, !< and !> (define field width), !AC, and UL
directives

Each example is accompanied by notes, under the heading "Results".
These notes show the output string created by the call to $FAO and
describe in more detail some considerations for using directives., The
sample output strings show delta characters (A) in all places where
FAO output contains multiple blanks.

Each of the examples refers to the following output fields (these
fields are not shown in the data areas for each example):

FAODESC § SMESCRIFTOR
JLONG 80 SOUTPUT BUFF

FOR OQUTFUT RUFFER
ROLENGTH

« LONG FAQRUE sANDRESS OF
FAQRUF +RLKE 80 F80-CHARACTER RUFFER
FAQLENS . BLKW 1 PRECETVE LENGTH OF QUTPUT

+BLKW 1 sRESERVE WORD FOR $QI0

These examples assume that each call to $FAO will be followed by a
call to $QIO or to SOUTPUT to write the output string produced by FAO.
The $QI0 system service (and the S$OUTPUT macro) require that the
length be specified as a 1longword; therefore, an extra word is
provided following the word defined to receive the 1length of the
output string returned by S$FAO. '

91

FAO EXAMPLES

Example 1
CONTROL. STRING AND INFUT PARAMETERS FOR EXAMPLE 1

SLEEFSTR? ASCID @!/8ATLORS: TAC 'AS 1ADER FDESCRIFTOR FOR CONTROL
FOTRING, B I8 DELIMITER SINCE / I8 IN CONTROL STRING

WINKEN? .ASCIC /WINKEN/ $COUNTED ASCII STRING
RLINKEND +ASCID /RBLINKEN/ SCHARACTER STRING DESCRIPTOR
NOD2 LASCTII /NODY/ FASCIT STRING

NODLEN? JLONG NODLEN-NOD FLENGTH OF ASBCII STRING

§FCaLL TO $FAD

$FAD..S CTRETR=SLEEFPSTRy OUTLEN=FAQLENy QUTRUF =FAQDESC s~

Results:
$FAO writes the output string into FAOBUF:
LORFLFSATLORS S WINKEN RLINKEN NOD

The !/ directive provides a carriage return/line feed character (shown
as <CR>}XLF>) for terminal output.

The IAC directive requires the address of a counted ASCII string (Pl
argument); the number sign (#) is required to specify the parameter,
so that the PUSHL instruction used by the $FA0O macro pushes the
address rather than its contents.

The IAS directive requires the address of a character string
descriptor (P2 argument).

The !AD directive requires two parameters: the length of the string
to be substituted (P3 argument) and its address (P4 argument).

Example 2

CONTROL. STRING AND INPUT PARAMETERS FOR EXAMPLE 2

NAMESTRS LASCID ZUNARLE TO LOCATE 13(8a8)11/ SNESCRIFTOR FOR
CONTROL, STRING

JONEST JASCID /JONES/ FNAME DESCRIPTOR

HARRIS: +ASCID /HARRIS/ FNAME DESCRIPTOR

WILSON: JASCID /WILSON/ FNAME DESCRIPTOR
$ CALL TO $FAQ

$FAD.LS CTRETR=NAMESTRy DUTLEN=FAOLENy OUTRUF=FAQNESC y -
L=k JONES y PRe=dHARRTS » F3=FWILEON

Results:
$FAQ writes the output string into FAOBUF:
UNARLE TO LOCATE JONESAAMAHARRISAAWIL.SONAL!
The 13(8A8) directive contains a repeat count: 3 parameters
(addresses of character string descriptors) are required. SFAQ

left-justifies each string into a field of 8 characters (the output
field length specified).

92

FAO EXAMPLES

The 1! directive supplies a literal ! in the output.

If the directive were specified without an output field 1length, that
is, if the directive had been specified as !3(AS), the 3 output fields
would be concatenated, as follows:

UNARBLE TO LOCATE JONESHARRISWILSON!

[Examples 3,4, and 5]

i CONTROL STRINGS AND INFUT PARAMETERS FOR EXAMPLES 3» 4 AND 3§

LONGSTR?S SNESCREFTOR FOR CONTROL STRING (LONGWORD CONVERSION)
LASCID ZVALUES TUL (DEC) IXL (HEX) 181 (STGNED /

BYTESTR S FPREGCRIFTOR FOR CONTROL STRING (RYTE CONVERSION)
SASCIN ZVALUES TUR (DEC) TXE (HEX) 18R (STGNEDD/

vaL.l: + LONG 200 FRECIMAL 200

VAl + LONG 300 FNECTMAL. 300

vaL. 3¢ + LONG =400 FNEGATIVE 400

3 CaALL TO $FAD (EXAMPLE 3)

$FAD.LS CTRETR=LONGSTRy QUTRUF =FAODESCy OUTLEN=FAQLENy -
FL=VUAL Ly FR=VALR s F3=VALS

Results for Example 3:
$FAO writes the output string:

VALUES 200 (DEC)Y 00000120 (HEX) ~400 (STGNEID
The longword value 200 is converted to decimal, the wvalue 300 is
converted to hexadecimal, and the value -400 is converted to signed
decimal., The ASCII results of each conversion are placed in the
appropriate position in the output string.
Note that the hexadecimal output string has 8 characters and is
zero~-filled to the 1left. This 1is the default output length for
hexadecimal longwords.
§ 0 CAaLL TO $FAD (EXAMPLE 4)

$FADL..S CTRETR=LONGSTRy QUTRUF=FAQDESCy OUTLEN=FAQLENy -
FRMLST=VAL1

Results for Example 4:
SFAO writes the output string:

VALUES 200 (DEC)Y 00000120C (HEX) —400 (SIGNEI
The results are the same as the results of example 3. However, unlike
the $FAO macro, which requires each parameter on the call to be coded,
the S$FAOL macro points to a list of consecutive longwords, which FAO
reads as parameters.,

o Call. TO $FAD (EXAMPLE $)

SFAOQL..S CTRETR=RYTESTR» OUTLEN=FAODLENy OUTRUF =FAQDESC » -
FRMLST=VAL1

93

FAO EXAMPLES

Results for Example 5:
SFAO writes the output string:
VALUES 200 (DEC) 20 (HEX) 112 (SIGNED)

The input parameters are the same as those for Example 4. However,
the control string (BYTESTR) specifies that byte values are to be
converted. FAO uses the low-order byte of each 1longword parameter
passed to it. The high-order 3 bytes are not evaluated. Compare
these results with the results of Example 4.

CONTROL STRING FOR EXAMFLE 6
MULTSTRS: +ASCID /ZHEX? 12(6XW)Y ZERO-DECE 12(-)12(72ZW)/
i CALL TO FAO

$FAD.S CTRETR=MULTSTRy OUTLEN=FADLENy OUTRUF =FADDESC » -~
F1=#10000yP2=42999

Results:
FAO writes the output string:
HEX1AAARZ10AA270F ZERO-DECE 00100000009999

Each of the directives !2(6XW) and !2(7ZW) contain repeat counts and
output 1lengths. First, FAO performs the !XW directive twice, using
the low-order word of the numeric parameters passed. The output
length specified is 2 characters longer than the default output field
width of hexadecimal word conversion, so 2 spaces are placed between
the resulting ASCII strings.

The !- directive causes FAO to back up over the parameter 1list. A
repeat count is specified with the directive, so that FAO skips back
over two parameters; then, it uses the same two parameters for the
1ZW directive. The !ZW directive causes the output string to be
zero-filled to the specified length, in this example, 7 characters.
Thus, there are no blanks between the output fields.

94

FAO EXAMPLES

Example 7
CONTROL. STRING AND INFUT PARAMETERS FOR EXAMFLE 7

ARGSTR?: +ASCIN /1AS RECETIVED IUR ARGIZGE 1-14(4UR)/

LISTAT JLONG ORION FANDRESS OF NAME STRING
+ L.ONG 3 SNUMEER OF ARGS IN LISY
+ LONG 10 $ARGUMENT 1
+LONG 123 $ ARGUMENT 2
+LONG 210 ARGUMENT 3

LISTRY JLONG L.YRA PADDRESS OF NAME STRING

+ LONG 1 SNUMRER OF ARGS IN LISTY
+ L.ONG 255 FARGUMENT 1
ORIONS JASCID /ORION/ FOESCRIPTOR FOR PROCESS ORION
LYRA? JABCID ZLYRA/ PRESCRIFTOR FOR PROCESS LYRA

i CALLS TO Fald

$FAOL..S CTRETR=ARGSTRy OUTLEN=FAOLENy OUTRUF=FAQDESC s -~
FRMLST=.18TA

$FAOL..S CTRETR=ARGSTRy OUTLEN=FAQLEN QUTBUF=FAOBESC y ~

Results:

Following the first call to S$SFAOL shown above, FAO writes the output
string:

ORTON RECETIVED 3 ARGS1A0A10 123 210
Following the second call, FAO writes the output string:
LYRA RECEIVED 1 ARGIAARES

In each of the examples, the PRMLST argument points to a different
parameter 1list; each 1list contains, 1in the first longword, the
address of a character string descriptor. The second longword begins
an argument list, with the number of arguments remaining in the list.
The control string uses this second longword twice: first to output
‘the value contained 1in the longword, and then to provide the repeat
count to output the number of arguments in the list (the !- directive
indicates that FAO should reuse the parameter).

The 1%S directive provides a conditional plural. When the last value
converted has a value not equal to 1, FAO outputs an "S"; if the
value is a 1 (as in the second example), FAO does not output an "S".

The output field length defines a width of 4 characters for each byte
value converted, to provide spacing between the output fields.

95

FAO EXAMPLES

Example 8

CONTROL. STRING FOR EXAMFLE 8
TIMESTRS JASCIN /15%: NOW 1S3 1%n/
i CAaLl TO $FAQ

$FA0.S CTRETR=TIMESTR» OUTLEN=FAOLENy OUTBUF=F AODESC » ~
P 140

Results:
FAO writes the output string:
Fawr NOW ISE dd-mmm—-wyus himmiess.oo

where dd-mmm-yyyy is the current.day, month, and year, and hh:mm:ss.cc
is the current time of day in hours, minutes, seconds, and hundredths
of seconds.

The !5*> directive requests FAO to write £five greater than (>)
characters 1into the output string. Since there is a space after the
directive, FAO also writes a space after the > characters on output.

The !%D directive requires the address of a quadword time value, which
must be in the system time format. However, when the address of the
time value is specified as 0, FAO uses the current date and time. For
information on how to obtain system time values in the required
format, see Chapter 8, "Timer and Time Conversion Services." For a
detailed description of the ASCII date and time string returned, see
the discussion of the Convert Binary Time to ASCII String ($ASCTIM)
system service in Part II.

§# CONTROL STRING FOR EXAMPLE 9
DAYTIMETR: ASCID ZDATES TLIADVEX.TIME: 1527/
s Cal.l TO FAD

S HBFAOLE CTRSTR=DAYTIMSTR y OUTLEN=FAQLEN» QUTRUF=FAQDESCy
FLmdQy P Rudly P 3=40

Results:
FAO writes the output string:
DATE D oed~mmm 29w TIME S B 2mm
In this example, an output length of 11 bytes is specified with the
18D directive, so that FAO truncates the time from the date and time

string, and outputs only the date.

The !#* directive requests that the wunderline character (_) be
repeated the number of times specified by the next parameter. Since
P2 is specified as 5, 5 underlines are written into the output string.

The 13%T directive normally returns the full system time; in this
example, the !5%T directive provides an output length for the time;
only the hours and minutes fields of the time string are written into
the output buffer.

96

FAO EXAMPLES

Example 10

§ CONTROL STRING AND FARAMETERS FOR EXAMPLE 10

WINDTHSTRS: ASCID Z12U<VARS 1AC VAL TUL ' =TOTAL S Y 7UL/

VARINAME S +ASCIC ZINVENTORY/ FUARTABLE 1 NAME
UnRl 2 + LONG 334 § CURRENT VALUE
VARLITOT « LONG WV sVAR 1L TOTAL
VARZNAME: +ABCIC /8ALES/ FUAR 2 NAME
VAR « L.ONG 280 $CURRENT VAL UE
VARZTOT: +LONG 10750 sVAR 2 TOTAL

5 CALLS TO $FAD

$FA0.LE CTRS
1

S TR=WINTHE TRy OUTLEN=FAQLEN y OUTRUF =FAQNESC » -
=HVARTNAME » F2=VAR Ly P3=VARITOT

$FA0.LE CTRETR=WINTHS TRy OUTLEN=FAQLEN» DUTRUF=FAQDESCy -
P L VARZINAME » F2uVARD y F3=VARITOT

Results:

Following the first call to FAO shown above, FAO writes the output
string:

VaR: TNVENTORY VAL 334AATOTAL 1 AMALES4
After the second call, FAO writes the output string:

vak: SALES VALY 28000000ATOTAL1AALO750
The 125< directive requests an output field width of 25 characters;
the end of the field is delimited by the !> directive. Within the
field defined in the example above are two directives, !AC and !UL.
The strings substituted by these directives can vary in length, but
the entire field always has 25 characters.
The 17UL directive formats the longword passed in each example (P2

argument) and right-justifies the result 1in a 7-character output
field.

97

$FORCEX - FORCE EXIT

$FORCEX

SFORCEX - FORCE EXIT

The Force Exit system service causes an Exit ($EXIT) system service
call to be issued on behalf of a specified process.

Macro Format

SFORCEX [pidadr] ,[prcnam] ,(code]

High-Level Language Format
SYS$FORCEX ([pidadr] , [prcnam] , [code])
pidadr

Address of a longword containing the process identification of
the process to be forced to exit.

prcnam
Address of a character string descriptor pointing to the process
name string. The name 1is implicitly qualified by the group
number of the process issuing the force exit request.

code
Longword completion code value to be used as the exit parameter.

If not specified, a value of 0 is passed as the completion code.

If neither a process identification nor a process name is specified,
the caller is forced to exit and control is not returned. For details
on how the service interprets the PIDADR and PRCNAM arguments, see
Table 7-1 in Chapter 7, "Process Control Services."
Return Status
SS$_NORMAL
Service successfully completed.
SS$_ACCVIO
The process name string or string descriptor cannot be read by
the caller, or the process identification cannot be written by
the caller.

S5$ NONEXPR

Warning. The specified process does not exist, or an invalid
process identification was specified.

98

SFORCEX - FORCE EXIT

S§S$_NOPRIV

The process does not have the privilege to force an exit for the
specified process.

SS$_INSFMEM

Insufficient system dynamic memory is available to complete the
service and the process has disabled resource wait mode with the
Set Resource Wait Mode (SSETRWM) system service.

Privilege Restrictions

User privileges are required to force an exit for:

Other processes in the same group (GROUP privilege)

Any other process in the system (WORLD privilege)

Resources Required/Returned

Notes

The Force Exit system service requires system dynamic memory.

1.

The image executing in the target process follows normal exit
procedures. For example, 1if any exit handlers have been
specified, they gain control before the actual exit occurs,
Use the Delete Process ($SDELPRC) system service if you do not
want a normal exit.

When a forced exit is requested for a process, a user mode
AST is queued for the target process. The AST routine
actually causes the Exit system service call to be issued by
the target process. Because the AST mechanism is used, user
mode ASTs must be enabled for the target process, or no exit
occurs until ASTs are re-enabled. (Thus, for example, a
suspended process cannot be stopped by SFORCEX.) The process
that called SFORCEX receives no notification that the exit is
not being performed.

The SFORCEX system service completes successfully if a force

exit request is already in effect for the target process but
the exit is not yet completed.

For an example of the SFORCEX system service and an explanation of the

actions

performed by the system when an image exits see Section 7.6,

"Image Exit."

99

$GETCHN -~ GET I/0 CHANNEL INFORMATION

$GETCHN

SGETCHN - GET I/0 CHANNEL INFORMATION
The Get I/O Channel Information system service returns information
about a device to which an I/0 channel has been assigned. Two sets of
information are optionally returned:

e The primary device characteristics

e The secondary device characteristics

In most cases the two sets of characteristic information are

identical. However, the two sets provide different information in the
following cases:

e If the device has an associated mailbox, the primary
characteristics are those of the assigned device and the
secondary characteristics are those of the associated mailbox.

e If the device is a spooled device, the primary characteristics
are those of the intermediate device and the secondary
characteristics are those of the spooled device.

e If the device represents a logical link on the network, the
secondary characteristics contain information about the link.

Macro Format

SGETCHN chan ,[prilen] ,[pribuf] ,[scdlen]) ,[scdbuf]

High-Level Language Format

SYSSGETCHN (chan , [prilen] ,I[pribuf] ,[scdlen] ,[scdbuf])

chan
Number of the I/0 channel assigned to the device,
prilen
Address of a word to receive the length of the primary
characteristics.
pribuf
Address of a character string descriptor pointing to the buffer
that is to receive the primary device characteristics. An
address of 0 (the default) implies that no buffer is specified.
scdlen
Address of a word to receive the length of the secondary
characteristics.
scdbuf

Address of a character string descriptor pointing to buffer that
is to receive the secondary device characteristics. An address
of 0 (the default) implies that no buffer is specified.

100

$SGETCHN - GET I/O CHANNEL INFORMATION

Return Status
SS$_BUFFEROVF

Service successfully completed. The device information returned
overflowed the buffer (s) provided and has been truncated.

5S$_NORMAL
Service successfully completed.
S§S$_ACCVIO

A buffer descriptor cannot be read by the caller, or a buffer or
buffer length cannot be written by the caller.

SS$_IVCHAN

An invalid channel number was specified, that 1is, a channel
number of 0 or a number larger than the number of channels
available.

SS$_NOPRIV

The specified channel is not assigned or was assigned from a more
privileged access mode.

Privilege Restrictions

The Get I/0 Channel Information service can be performed only on
assigned channels and from access modes that are equal to or more
privileged than the access mode from which the original channel
assignment was made,

Notes

1. The Get 1I/0 Device 1Information ($GETDEV) system service
returns the same information as the Get 1I/0 Channel
Information system service.

2. The S$GETCHN and $GETDEV system services return information in
a user-supplied buffer. Symbolic names defined 1in the
SDIBDEF macro represent offsets from the beginning of the
buffer. The length of the buffer is defined in the constant
DIB$K_LENGTH.

101

$GETCHN - GET I/0 CHANNEL INFORMATION

The field offset names, lengths, and contents are listed below.

Field Name . Length (bytes) Contents

DIBSL_DEVCHAR 4 Device characteristics

DIB$B_DEVCLASS 1 Device class

DIB$B_DEVTYPE 1 Device type

DIBSB_SECTORS 1 Number of sectors per track (disk)

DIBSB_TRACKS 1 Number of tracks per cylinder (disk)

DIBSW_CYLINDERS 2 Number of cylinders on the volume
(disk)

DIBSW_DEVBUFSIZ 2 Device buffer size

DIBSL DEVDEPEND 4 Device dependent information

DIB$L MAXBLOCK 4 Number of logical blocks on the volume

- (disk)

DIBSW UNIT 2 Unit number

DIBSW DEVNAMOFF 2 Offset to device name string

DIBSL PID 4 Process identification of device owner

DIBSL_OWNUIC 4 UIC of device owner

DIBSW_VPROT 2 Volume protection mask

DIBSW_ERRCNT 2 Error count

DIBSL OPCNT 4 Operation count

DIB$W VOLNAMOFF 2 Offset to volume label string

DIBSW_RECSIZ 2 Blocked record size (valid for
magnetic tapes when DIB$W_VOLNAMOFF is
nonzero)

The device name string and volume label string are returned in the
buffer as counted ASCII strings and must be located by using their
offsets from the beginning of the buffer.

Any fields not applicable to a particular device are returned as
zZeros.

For further details on the contents of this buffer and on
device-dependent information returned, see the VAX/VMS 1/0 User's
Guide.

102

$GETDEV - GET I/0 DEVICE INFORMATION

$GETDEV

SGETDEV - GET I/0 DEVICE INFORMATION

The Get I/0 Device Information system service returns information
about an I/0 device. This service allows a process to obtain
information about a device to which the process has not assigned a
channel. It returns the same information as described in the
explanation of the Get I/O0 Channel Information ($SGETCHN) system

service. See Note 2 under the SGETCHN system for the format of
information returned.

Macro Format

SGETDEV devnam ,[prilen] ,[pribuf] ,[scdlen] ,[scdbuf}

High-Level Language Format
SYSSGETDEV (devnam , [prilen] ,[pribuf] ,[scdlen] , [scdbuf])
devnam

Address of a character string descriptor pointing to the device
name string. The string may be either a physical device name or
a logical name. TIf the first character in the string 1is an
underline character (), the name is considered a physical device
name. Otherwise, a single level of logical name translation is
performed and the equivalence name, if any, is used.

prilen

Address of a word to receive the 1length of the primary
characteristics., ’

pribuf
Address of a character string descriptor pointing to the buffer
that 1is to receive the primary device characteristics, An
address of 0 (the default) implies that no buffer is specified.

scdlen

Address of a word to receive the 1length of the secondary
characteristics.

scdbuf
Address of a character string descriptor pointing to buffer that

is to receive the secondary device characteristics. An address
of 0 (the default) implies that no buffer is specified.

Return Status
SSS_BUFFEROVF

Service successfully completed. The device information returned
overflowed the buffer(s) provided and has been truncated.

103

$GETDEV - GET 1/0 DEVICE INFORMATION

SS$_NORMAL
Service successfully completed.
SS$_ACCVIO

A buffer descriptor cannot be read by the caller, or a buffer or
buffer length cannot be written by the caller.

S8$_IVDEVNAM

No device name was specified, or the device name string has
invalid characters.

SS$_IVLOGNAM

The device name string has a length of 0 or has more than 63
characters.

SS$_NONLOCAL

Warning. The device is on a remote system.

SS$_NOSUCHDEV

Warning. The specified device does not exist on the host system.

104

$GETJPI - GET JOB/PROCESS INFORMATION

SGETJPI

$GETJPI - GET JOB/PROCESS INFORMATION

The Get Job/Process Information system service provides accounting,
status, and identification information about a specified process.

Macro Format

$GETJPI [efn],[pidadr],[prcnam],itmlst,[iosb],[astadr],{astprm]

High-Level Language Format

SYSSGETJPI({efn], [pidadr], [prcnam],itmlst, [iosb],[astadr],[astprm])

efn
Number of the event flag to be set when the request completes.
If not specified, this argument defaults to 0.

pidadr
Address of a longword containing the process identification of
the process for which information is requested.

prcnam
Address of a character string descriptor pointing to a 1- to
15-character process name string. The process name is implicitly
qualified by the group number of the process issuing the request.

itmlst
Address of a list of item descriptors that describe the specific
information requested and point to buffers to receive the
information. The format of the list is described later 1in this
section. The item codes are listed in Table 4.

iosb
Address of a quadword I/0 status block that is to receive final
completion status,

astadr
Address of the entry mask of an AST service routine to be
executed when the service completes. If specified, the AST
routine executes at the access mode from which the $GETJPI
service was requested.

astprm

AST parameter longword to be passed to the AST completion
routine.

If neither a process identification nor a process name 1is specified,
information about the calling process is returned. For details on how
the service interprets the PIDADR and PRCNAM arguments, see Table 7-1
in Chapter 7, "Process Control Services."

105

$GETJPI ~ GET JOB/PROCESS INFORMATION

Return Status
SS$_NORMAL
Service successfully completed.
SS$_BADPARAM
The item list contains an invalid identifier.
SS$_ACCVIO

The item list cannot be read by the caller, or the buffer 1length
or buffer cannot be written by the caller.

SS$_IVLOGNAM

The process name string has a length of 0, or has more than 15
characters.

§s$_NOMOREPROC

Warning. During a "wildcard" process search (see Note 3), no
more processes were found.

SS$_NONEXPR

Warning. The specified process does not exist, or an invalid
process identification was specified.

SS$_NOPRIV

The process does not have the privilege to obtain information
about the specified process.

SSS_SUSPENDED
The specified process is suspended or in a miscellaneous wait
state, and the requested information cannot be obtained.
Privilege Restrictions
User privileges are required to obtain information about:
e Other processes in the same group (GROUP privilege)

e Any other process in the system (WORLD privilege)

Notes

1. Effective with Release 2 of VAX/VMS, the SGETJPI service sets
event flag 0 at request completion by default. If any of
your programs running under an earlier release depend on
event flag 0 being clear after a call to $GETJPI, you will
have to modify these programs.

106

$GETJPI - GET JOB/PROCESS INFORMATION

If you request information about a process other than your
own, SGETJPI operates asynchronously: that is, it returns
control to your program before it places the requested
information in the specified buffers. 1In such a case, if
your program needs the information before it can proceed, you
must wait for an event flag. For example:

SGETIFT.S
RERUW

BSEW ERROR

If you request information about your own process, $GETJPI
does not return control to your program until after it places
the requested information in the specified buffers.

The reason that getting information about another process is
an asynchronous operation is that the information may be
contained in the other process's virtual address space and
the process might have a lower priority or might be currently
swapped out of the balance set. To allow your program to
overlap other functions with the time needed to schedule the
other process for execution or swap it into the balance set,
$GETJPI returns immediately after it has queued its
information-gathering request to the other process,

You can use "wildcard" process searching to get information
about processes in the system for which you have the
privilege to obtain information. To use this feature, set
the 1longword pointed to by the PIDADR argument to negative
one (-1), and then call S$GETJPT continually (specifying the
same PIDADR argument) until you receive the return status
SSS_NOMOREPROC.

This service uses the longword pointed to by the PIDADR
argument to contain a value representing the current search
context; therefore, you must specify the same PIDADR
argument for each «call to use this feature. To start a
second "wildcard" process search after completing the first,
you must set the longword pointed to by the PIDADR argument
to -1 again.

The following example shows a segment of code to obtain the

user name of every process for which the caller has the
privilege to obtain information.

107

FID

ITEMG? +WORD 12

UNAME 2 +RBLKR 12
UNAMES: BLKL
T08E: +BLKQ

$GETJPI - GET JOB/PROCESS INFORMATION

$ P IREF i Nefine $GETJIFI item codes
: +LONG -1, "Wildoard® FID

Size of usermame buffer
Username item code

Address of ysernsmne huffer
Address Lo return usernsme size
Ered of list

Userrname bhuffer

Username size buffer

Comeletion status

s WORD JPIH.USERNAME
+LONG UNAME

+LLONG UNAMES

+LLONG 0

Py

1w E3 S EF EF G E> CF w>

-

START? +WORD 0

LOOFS S$GEETIPTLS EFN=E1yFITADR=FIDy TTMLST=TTEMSy TOSR=TOGR
BLRS ROy WAIT ¥ IT successy conbinue
CMPW RO# #HES..NOFRIV ¢ No srivilege to get info on srocess?
REQL. LOOF i IF o wrive try next rrocess
CMPW RO» G885 SUSFENDED § Process suseended?

WAT

BRE

BEQL 1..OOF #OIF wesy Lru medt rrocess
CMFW RO » B85S NOMOREFROC § No more srocesses?

BEQL TNONE 17 wesy all done
BHRW ERROR i Elasery evrror

T: SWATTFR..S EFN=EL # Wait for informastion
MOVZWIL. TOSERO i Get comeletion status
BERW ERROR i Check for errorg
REBW DISFLAY..NAME i Disrlaw the rname
L.OOF $

Format of Item List for $GETJPI System Service

The
one
lis

item list used for input to the S$GETJPI system service consists of
or more consecutive item descriptors. Each item descriptor in this
t has the format:

31 16 15 0

item code - buffer length

buffer address

return length address

buffer length

item

Length of the buffer to receive the specified information. All
buffers reserved to receive information should be longwords, unless
otherwise indicated in Table 4.

code

Symbolic name defining the information to be returned. The symbolic
names have the format:

JPIS$_code

These symbolic names are defined in the $JPIDEF macro. The codes are
listed in Table 4.

108

$GETJPI -~ GET JOB/PROCESS INFORMATION

buffer address
Address of the buffer to receive the specified information. If the
buffer is too small for the requested information, $GETJPI truncates
the information.

return length address

Address of a word to receive the length of the information returned.
If this address is specified as 0, no length is returned.

The list of item descriptors must be terminated by an item code of 0 or a
longword of 0.

All buffers are zero-filled on return, if necessary.

For example, an item list can be coded as follows to obtain the process
identification and process name of a process:

GETL.IST: JWORD 4 PLENGTH OF BUFFER
JWORD JPTS.LFID FREQUEST PID
+LONG GETRID ‘ FANDRESS TO RECEIVE FTD

+LONG FNONT NEED 1. ETURN
+JWORD 18 SLENGTH OF BUFFE
+WORD thNULoI PRUF”“Q NAME
LONG GETPRONE 'b TG L TVE NAME
o LONG FhFNﬁM LEN 35 T “ﬂ TVE LENGTH
LLONG O vLNH OF GETLIST
GETFIN: RLKL 3 FRETURN FI0 HERE
GETFRONAMS
+BLKE 1% SRETURN PROCESS NAME HERE
FRONAM.LENS
+BLKW 1 FRETURN LENGTH OF PROCESS NAME

109

SGETJPI - GET JOB/PROCESS INFORMATION

Table 4
Item Codes for Job/Process Information
Item Data

Identifier Type Information Returned

JPI$_ACCOUNT string Account name string (1-8 characters)

JPIS_APTCNT value Active page table count

JPIS_ASTACT value Access modes with active ASTs

JPIS_ASTCNT value Remaining AST quota

JPIS_ASTEN value Access modes with ASTs enabled

JPIS$_ASTLM value AST limit quota

JPIS_AUTHPRIV | value Quadward mask of privileges the
process is authorized to enable

JPIS$_BIOCNT value Remaining buffered I/0 quota

JPIS_BIOLM value Buffered I/0 limit quota

JPIS$_BUFIO value Count of process buffered I/0
operations

JPIS_BYTCNT value Remaining buffered I/O0 byte count
quota

JPIS_BYTLM value Buffered I/0 byte count limit quota

JPIS_CPULIM value Limit on process CPU time

JPI$_CPUTIM value Accumulated CPU time (in
10-millisecond tics)

JPI$_CURPRIV value Quadword mask of ©process's current
privileges

JPIS$_DFPFC value Default page fault cluster size

JPIS_DFWSCNT value Default working set size

JPI$_DIOCNT value Remaining direct I/0 quota

JPIS_DIOLM value Direct I/0 limit quota

JPIS_DIRIO value Count of direct 1I/0 operations for
process

JPIS_EFCS value Local event flags 0 through 31

JPIS_EFCU value Local event flags 32 through 63

JPIS_EFWM value Event flag wait mask

(continued on next page)

110

$GETJPI - GET JOB/PROCESS INFORMATION

Table 4 (Cont.)
Item Codes for Job/Process Information

Item Data

Identifier Type Information Returned

JPIS_EXCVEC address Address of a list of exception vectors
in the following order: primary and
secondary exception vectors for kernel
mode; primary and secondary exception
vectors for executive mode; primary
and secondary exception vectors for
supervisor mode; primary and
‘'secondary exception vectors for user
mode

JPI$_FILCNT value Remaining open file quota

JPIS_FILLM value Open file quota

JPIS_FINALEXC | address Address of a list of final exception
vectors for kernel, executive,
supervisor, then user access mode

JPIS_FREPOVA value First free page at end of program
region

JPIS_FREP1VA value First free page at end of control
region

JPIS_GPGCNT value Global page count in working set

JPIS_GRP value Group number of UIC

JPI$_IMAGNAM string Current image file name (1 to 64
characters) ’

JPIS_IMAGPRIV value Quadword mask of privileges the
current image was installed with

JPIS_LOGINTIM value Process creation time; returned as
64-bit system time value

JPIS_MEM value Member number of UIC

JPIS_OWNER value Process identification of process
owner

JPIS$_PAGEFLTS value Count of page faults

JPI$_PGFLQUOTA| value Paging file quota (maximum virtual
page count)

JPI$_PID‘ value Process identification

JPIS_PPGCNT value Process page count in working set

(continued on next page)

111

$GETJPI - GET JOB/PROCESS INFORMATION

Table 4 (Cont.)

Item Codes for Job/Process Information

Item Data

Identifier Type Information Returned

JPIS$_PRCCNT value Count of subprocesses

JPI$_PRCLM value Subprocess quota

JPI$_PRCNAM string Process name (1-15 characters)

JPIS_PRI value Current process priority

JPIS_PRIB value Process's base priority

JPI$_PROCPRIV value Quadword mask of process's default
privileges

JPI$_STATE value Process state (Always SCHSK_CUR for

' the current process. States are

defined by the $STATEDEF macro and
contained in SYSSLIBRARY:LIB.MLB.)

JPIS_STS value Process status flags (defined by the
$SPCBDEF macro and contained in
SYSSLIBRARY:LIB.MLB)

JPI$_TERMINAL string Login terminal name for interactive
users (l-7 characters)

JPI$_TMBU value Termination mailbox unit number

JPIS_TQCNT value Remaining timer queue entry quota

JPIS_TQLM value Timer queue entry quota

JPIS_UIC value Process's UIC

JPI$_USERNAME string User name string (1-12 characters)

JPI$_VIRTPEAK value Peak virtual address size

JPI$_VOLUMES value Count of currently mounted volumes

JPI$_WSAUTH value Maximum authorized working set size

JPI$_WSPEAK value Working set peak

JPIS_WSQUOTA value Working set size quota

JPI$_WSSIZE value Process's current working set size

112

$GETMSG - GET MESSAGE

$GETMSG

$GETMSG - GET MESSAGE
The Get Message system service locates and returns message text
associated with a given message identification code into the caller's
buffer. The message can be from the system message file or can be a
user—-defined message.

Macro Format

$GETMSG msgid ,msglen ,bufadr ,[flags] ,[outadr]

High-Level Language Format

SYSSGETMSG (msgid ,msglen ,bufadr ,[flags] ,[outadr])

msgid
Identification of the message to be retrieved. Each message has
a unique identification, contained in the high-order 29 bits of
system longword status codes.

msglen

Address of a word to receive the length of the string returned.

bufadr

Address of a character string descriptor pointing to the buffer
to receive the message string. The maximum size of any message
that can be returned is 256 bytes.

flags

Mask defining message content. The bits in the mask and their
meanings are:

Bit Value Meaning
0 1 Include text of message

0 Do not include text of message
1 1 Include message identifier

0 Do not include message identifier
2 1 Include severity indicator

0 Do not include severity indicator
3 1 Include facility name

0 Do not include facility name

If this argument is omitted in a MACRO or BLISS service call, it
defaults to a value of 15; that is, all flags are set and all
components of the message are returned. If this argument is
omitted in a FORTRAN service call, it defaults to a value of 0.

113

$GETMSG - GET MESSAGE

outadr

Address of a 4-byte array to receive the following values:

Byte Contents
0 Reserved
1 Count of FAO arguments associated with message
2 User-specified value in message; if any
3 Reserved

Return Status
SS$_BUFFEROVF

Service successfully completed. The string returned overflowed
the buffer provided, and has been truncated.

S55$_MSGNOTFND

Service successfully completed; however, the message code cannot
be found, and a default message has been returned (see Note 6).

SS$_NORMAL

Service successfully completed.

Notes

1. The operating system uses this service to retrieve messages
based on unique message identifications and to prepare to
output the messages.

2. The message identifications correspond to the symbolic names
for status codes returned by system components, for example
SS$ code from system services, RMS$S_code for RMS messages,
and so on.

3. When all bits in the FLAGS argument are set, $GETMSG returns
a string in the format:

facility-severity-ident, message-text

where:
facility identifies the component of the operating
system
severity is the severity code (the low-order three
bits of the status code)
ident is the unique message identifier

message—-text 1is the text of the message

For example, if the MSGID argument is specified as:
MSGID=#55$_DUPLNAM

SGETMSG returns the string:

$SYSTEM-F-DUPLNAM, duplicate process name

114

SGETMSG - GET MESSAGE

This service does not check the length of the argument 1list,
and therefore cannot return the SS$ INSFARG (insufficient
arguments) error status code. If the service does not
receive enough arguments (for example, if you omit required
commas in the call), you might not get the desired result.

Users can define their own messages with the MESSAGE command.
See the VAX-11 Utilities Reference Manual and the VAX/VMS
Command Language User's Guide.

The message text associated with a particular 32-bit message
identification can be retrieved from one of several places.

This service takes the following steps to locate the message
text:

1. All message sections 1linked into the currently

executing image are searched for the associated
information.

2., If the information 1is not found, the process
permanent message file 1is searched. (The process
permanent message file can be specified by the SET
MESSAGE command.)

3. If the information is not found, the system-wide
message file is searched.

4, If the information is not found, a message in the
form

$facility-severity-NONAME, message=xxxxxxxx[hex],
(facility=n, message=n[dec])

is returned to the caller's bhuffer and the status
code SS$_MSGNOTFND is returned.

115

SGETTIM - GET TIME

$GETTIM

$GETTIM - GET TIME
The Get Time system service furnishes the current system time in
64-bit format. The system time is updated every 10 milliseconds, and

the time is returned in 100-nanosecond units from the system base
time.

Macro Format

S$GETTIM timadr

High-Level Language Format
SYSSGETTIM(timadr)
timadr

Address of a quadword that is to receive the current time 1in
64~bit format.

Return Status
SS$_NORMAL

Service successfully completed.
SS$_ACCVIO

The quadword to receive the time cannot be written by the caller.

Notes

For an example of the $GETTIM system service, and additional
details on the system time format, see Chapter 8, "Timer and Time
Conversion Services."

116

SHIBER - HIBERNATE

$HIBER

SHIBER - HIBERNATE

The Hibernate system service allows a process to make itself inactive
but to remain known to the system so that it can be interrupted, for
example to receive ASTs. A hibernate request is a wait-for-wake-event
request. When a wake 1is issued for a hibernating process with the
SWAKE system service or a result of a Schedule Wakeup ($SCHDWK) system
service, the process continues execution at the instruction following
the Hibernate call.

Macro Formatl

SHIBER_S

High-Level Language Format

SYSSHIBER

Return Status
SS$_NORMAL

Service successfully completed.

Notes

1. A hibernating process can be swapped out of the balance set
if it is not locked into the balance set.

2, The wait state caused by this system service can be
interrupted by an asynchronous system trap (AST) if (1) the
access mode at which the AST is to execute 1is equal to or
more privileged than the access mode from which the hibernate
request was issued and (2) the process is enabled for ASTs at
that access mode.

When the AST service routine completes execution, the system
re-executes the SHIBER system service on the process's
behalf, 1If a wakeup request has been issued for the process
during the execution of the AST service routine (either by
itself or another process), the process resumes execution.
Otherwise, it continues to hibernate.

3. If one or more wakeup requests are issued for the process
while it is not hibernating, the next hibernate call returns
immediately, that is, the process does not hibernate. No
count is maintained of outstanding wakeup requests.

1. Only the " _S" macro form 1is provided for the Hibernate system
service.

117

SHIBER - HIBERNATE

4. Although this service has no arguments, a FORTRAN function
reference must use parentheses to indicate a null argument
list, as in:

ISTAT=SYSSHIBER()
For an example of the $HIBER system service and additional information
on process hibernation, see Section 7.5, "Process Hibernation and

Suspension." For an example of scheduled wakeup requests, see Section
8.6, "Scheduled Wakeups."

118

SINPUT - QUEUE INPUT REQUEST AND WAIT FOR EVENT FLAG

SINPUT

SINPUT - QUEUE INPUT REQUEST AND WAIT FOR EVENT FLAG
The $INPUT macro is a simplified form of the Queue I/0 Request and
Wait for Event Flag ($SQIOW) system service. This macro queues a
virtual input operation using the IO$_READVBLK function code and waits
for I/0 completion.
Macro Format

SINPUT chan ,length ,buffer ,[iosb] ,[efn]

chan

Number of the I/0 channel assigned to the device from which input
is to be read.

length
Length of the input buffer.
buffer
Address of the input buffer.
iosb |
Address of a quadword I/O status block.
efn

Number of the event flag to be set when the request is complete.
The default is event flag 0.

Notes

The $INPUT macro has only one form. Arguments must be coded as
for the $name_S macro form, but "_S" must not be included in the
macro call,

Return Status, Privilege Restrictions, Resources Required/Returned,
Additional Notes

See the description of the Queue 1I/0 Request ($SQIO) system
service.

119

$LCKPAG - LOCK PAGES IN MEMORY

SLCKPAG

SLCKPAG - LOCK PAGES IN MEMORY

The Lock Pages In Memory system service locks a page or range of pages
in memory. The specified virtual pages are forced into the working
set and then locked in memory. A locked page is not swapped out of
memory if its ©process's working set is. These pages are not
candidates for page replacement and in this sense are 1locked 1in the
working set as well.

Macro Format

SLCKPAG inadr ,[retadr] ,[acmode]

High-Level Language Format
SYSSLCKPAG (inadr , [retadr] ,[acmode])

inadr

Address of a 2-longword array containing the starting and ending
virtual addresses of the pages to be locked. If the starting and
ending virtual addresses are the same, a single page 1is 1locked.
Only the virtual page number portion of the virtual addresses is
used; the low-order 9 bits are ignored.

retadr

Address of a 2-longword array to receive the starting and ending
virtual addresses of the pages actually locked.

acmode
Access mode of the locked pages. The specified access mode |is
maximized with the access mode of the caller. The resultant
access mode must be equal to or more privileged than the access
mode of the owner of each page in order to lock the page.

Return Status

SS$_WASCLR

Service successfully completed. All of the specified pages were
previously unlocked.

SS$_WASSET

Service successfully completed. At least one of the specified
pages was previously locked in memory.

SS$_ACCVIO

1. The input array cannot be read by the caller, or the output
array cannot be written by the caller.

2., A page in the specified range is inaccessible or does not
exist.

120

SLCKPAG - LOCK PAGES IN MEMORY

S8$_LCKPAGFUL

The system-defined maximum limit on the number of pages that can
be locked in memory has been reached.

SS$_NOPRIV

The process does not have the privilege to lock pages in memory.

Privilege Restrictions

l.

The user privilege PSWAPM 1is required to 1lock pages in
memory.

The access mode of the caller must be equal to or more
privileged than the access mode of the owner of the pages
being locked.

If more than one page is being locked and it is necessary to
determine specifically which pages had been previously
locked, the pages should be locked one at a time.

If an error occurs while locking pages, the return array, if
requested, indicates the pages that were successfully locked
before the error occurred. If no pages are locked, both
longwords in the return address array contain a -1.

Pages that are locked in memory can be wunlocked with the

Unlock Pages from Memory (SULKPAG) system service, Locked
pages are automatically unlocked at image exit.

121

SLKWSET - LOCK PAGES 1IN WORKING SET

SLWKSET

S$LKWSET - LOCK PAGES IN WORKING SET

The Lock Pages in Working Set system service allows a process to
specify that a group of pages that are heavily used should never be
replaced in the working set., The specified pages are brought into the
working set if they are not already there and are locked so that they
do not become candidates for replacement.

Macro Format

SLKWSET inadr ,[retadr] ,[acmode]

High-Level Language Format
SYSSLKWSET (inadr ,[retadr] ,[acmode])
inadr

Address of a 2-longword array containing the starting and ending
virtual addresses of the pages to be locked. If the starting and
ending virtual addresses are the same, a single page 1is 1locked.
Only the virtual page number portion of the virtual addresses is
used; the low-order 9 bits are ignored.

retadr

Address of a 2-longword array to receive the starting and ending
virtual addresses of the pages actually locked.

acmode
Access mode of the locked pages. The specified access mode Iis
maximized with the access mode of the caller. The resultant
access mode must be equal to or more privileged than the access
mode of the owner of each page in order to lock the page.

Return Status

SS$_WASCLR

Service successfully completed. All of the specified pages were
previously unlocked.

SS$_WASSET

Service successfully completed. At least one of the specified
pages was previously locked in the working set.

SS$_ACCVIO

1. The input address array cannot be read by the caller, or the
output address array cannot be written by the caller.

2. A page in the specified range is inaccessible or nonexistent.

122

$LKWSET - LOCK PAGES 1IN WORKING SET

SS$_LKWSETFUL
The locked working set is full, If any more pages are locked,
there will not be enough dynamic pages available to continue
execution,

SS$_NOPRIV

A page in the specified range is in the system address space.

Privilege Restrictions

The access mode of the caller must be equal to or more privileged
than the access mode of the owner of the pages being locked.

Notes

1., If more than one page is being locked and it is necessary to
determine specifically which pages had been previously
locked, the pages should be locked one at a time,

2. If an error occurs while locking pages, the return array, if
requested, indicates the pages that were successfully locked
before the error occurred. If no pages are 1locked, both
longwords in the return address array contain a -1,

3. Pages that are locked in the working set can be unlocked with
the Unlock Page from Working Set (SULWSET) system service,

For an explanation of the relationship between a process's working set

and its wvirtual address space, see Chapter 10, "Memory Management
Services."

123

SMGBLSC - MAP GLOBAL SECTION

$SMGBLSC

$MGBLSC - MAP GLOBAL SECTION

The Map Global Section provides a process with access to an existing

globa

1 section. Mapping a global section establishes the

correspondence between pages in the process's virtual address space

and t

he physical pages occupied by the global section.

Macro Format

High-

inadr

retad

acmod

$SMGBLSC 1inadr ,[retadr] ,[acmode] ,[flags] ,gsdnam ,[ident]
, [relpag]

Level Language Format

SYS$SMGBLSC (inadr ,[retadr] ,[acmode] ,([flags] ,gsdnam ,[ident]
s [relpagl)

Address of a 2-longword array containing the starting and ending
virtual addresses in the ©process's virtual address space into
which the section is to be mapped. The pages can be in the
program (PO) region or the control (Pl) region.

The second longword (ending address), however, is ignored by this
service. The section is mapped as follows: the first relative
page (RELPAG argument) is mapped at the starting virtual address,
and the end of the section determines the actual ending virtual
address.

If the SECSM_EXPREG bit is set in the FLAGS argument, the
addresses specified in the INADR argument determine only whether
the section will be mapped in the program (P0) or control (Pl)
region.

Only the virtual page number portion of the virtual addresses is
used; the low-order 9 bits are ignored.

r

Address of a 2-longword array to receive the starting and ending
virtual addresses of the pages into which the section was
actually mapped.

e

Access mode indicating the owner of the pages created during the
mapping. The access mode is maximized with the access mode of
the caller.

124

SMGBLSC - MAP GLOBAL SECTION

flags

Mask defining the section type and characteristics. This mask is
the 1logical OR of the flag bits you wish to set. The flag bits
for the mask are defined in the S$SECDEF macro. Their meanings
and the default values they override are:

Flag Meaning Default Attribute
SECSM_WRT Map section read/write Map section read-only
SECSM_SYSGBL System global section Group global section
SECSM_EXPREG Map into first available Map into address
virtual address range range specified by
INADR
gsdnam

Address of a character string descriptor pointing to the text
name string for the global section. (Section 10.6.5.1 explains
the format of this text name string.) For group global sections,
the global section name 1is implicitly qualified by the group
number of the caller. All section names are implicitly qualified
by their identification fields.

ident

Address of a quadword indicating the version number of the global
section and the criteria for matching the identification,

The version number is in the second longword. The version number
contains two fields: a minor identification in the low-order 24
bits and a major identification in the high-order 8 bits,

The first longword specifies, in the low-order 3 bits, the
matching criteria. Their wvalid values, the symbolic names by
which they can be specified, and their meanings are listed below:

Value/Name Match Criteria

0 SECSK_MATALL Match all versions of the section

1 SECSK_MATEQU Match only if major and minor identifications
match

2 SECS$K_MATLEQ Match if the major identifications are equal
and the minor identification of the mapper is
less than or equal to the minor

identification of the global section

If no address is specified or is specified as 0 (the default),
the version number and match control fields default to 0.

relpag
Relative page number within the section of the first page to be
mapped. If not specified or specified as 0 (the default), the

global section is mapped beginning with the first wvirtual block
in the section.

125

$MGBLSC - MAP GLOBAL SECTION

Return Status

SS$_NORMAL
Service successfully completed.

S8$_ACCVIO
The input address array, the global section name or name
descriptor, or the section identification field cannot be read by
the caller, or the return address array cannot be written by the
caller.

SS$_ENDOFFILE

Warning. The starting virtual block number specified 1is beyond
the logical end-of-file.

SS$_EXQUOTA

The process exceeded its paging file quota creating
copy-on-reference pages.

SS$_INSFWSL

The process's working set 1limit 1is not large enough to
accommodate the increased virtual address space.

SS$_INTERLOCK

The bit map 1lock for allocating global sections from the
specified shared memory is locked by another process,

SS$_IVLOGNAM

The global section name has a length of 0, or has more than 15
characters.

SS$_IVSECFLG
A reserved flag was set.
SS$_IVSECIDCTL

The match control field of the global section identification is
invalid.

SS$_NOPRIV
The file protection mask specified when the global section was
created prohibits the access or the type of access requested by
the caller.
A page in the input address range is in the system éddress space.
SS$_NOSUCHSEC
Warning. The specified global section does not exist.

SS$_PAGOWNVIO

A page in the specified input address range is owned by a more
privileged access mode.

126

$MGBLSC - MAP GLOBAL SECTION

SS$_SHMNOTCNCT

The shared memory named in the GSDNAM string is not known to the
system. This error can be caused by a spelling error in the
string, an improperly assigned logical name, or the failure to
identify the memory as shared at SYSGEN time.

SS$_TOOMANYLNAM

Logical name translation of the GSDNAM string exceeded the
allowed depth.

SS$_VASFULL

The process's virtual address space 1is full; no space is
available in the page tables for the pages created to contain the
mapped global section.

Privilege Restrictions

The privilege to map a global section, and whether it may be
mapped read/write or read-only, is determined by the protection
mask assigned to the global section when it was created.

Resources Required/Returned

The process's working set 1limit quota (WSQUOTA) must be
sufficient to accommodate the 1increased size of the virtual
address space when mapping a section. If the section pages are
copy-on-reference, the process must also have sufficient paging
file quota (PGFLQUOTA).

Notes

1. When the $MGBLSC system service maps a global section, it
adds pages to the process's virtual address space. The
section is mapped from a 1low address to a high address,
regardless of whether the section is mapped in the program or
control region.

2. If an error occurs during the mapping of a global section,
the return address array, if specified, indicates the pages
that were successfully mapped when the error occurred. If no
pages were mapped, both longwords of the return address array
contain -1.

For an example of the $MGBLSC system service and additional details on
global section creation and use, see Section 10.6, "Sections."

127

SNUMTIM - CONVERT BINARY TIME TO NUMERIC TIME

SNUMTIM

$NUMTIM - CONVERT BINARY TIME TO NUMERIC TIME

The Convert Binary Time to Numeric Time system service converts an
absolute or delta time from 64-bit system time format to binary
integer date and time values, The numeric time 1is placed in a
user-specified buffer as illustrated in Figure 1.

31 16 15 0
month of year year since 0
houml"‘:fv day day of month
seco;c; of minute minute of hour
hundredths of second

Figure 1 Format of Numeric Time Buffer

Macro Format

SNUMTIM timbuf ,[timadr]

High-Level Language Format
SYSSNUMTIM (timbuf , [timadr])
timbuf

Address of a 7-word buffer to receive the date and time
information.

timadr
Address of a 64-bit time value to be converted. If not specified
or specified as 0, the current system time is used. A positive
time value represents an absolute time. A negative time value
indicates a delta time.

Return Status

SS$_NORMAL
Service successfully completed.

SS$_ACCVIO

The 64-bit time value cannot be read by the caller, or the
numeric buffer specified cannot be written by the caller.

SS$_IVTIME

The specified delta time is equal to or greater than 10,000 days.

128

SNUMTIM - CONVERT BINARY TIME TO NUMERIC TIME

Notes

If a delta time is specified, the year and month fields of the

information returned are gzero. The day field contains the

integer number of days specified by the delta time; it must be
less than 10,000 days.

129

SOUTPUT - QUEUE OUTPUT REQUEST AND WAIT FOR EVENT FLAG

$OUTPUT

SOUTPUT - QUEUE OUTPUT REQUEST AND WAIT FOR EVENT FLAG
The $OUTPUT macro is a simplified form of the Queue I/0 Request and
Wait for Event Flag ($QIOW) system service. This macro performs a

virtual output operation using the IO$_WRITEVBLK function code and
waits for I/0 completion. i

Macro Format

SOUTPUT chan ,length ,buffer ,[iosb] ,[efn]

chan
Number of the I1/0 channel assigned to the device to which output
is to be written. '
length
Length of the output buffer.
buffer
Address of the output buffer.
iosb
Address of quadword I/0 status block.
efn
Number of the event flag to be set when the request is complete.
The default is event flag 0.
Notes

1. The S$OUTPUT macro has only one form. Arguments must be coded
as for the $name_S macro form, but "_S" must not be included
in the macro call.

2. The SOUTPUT macro supplies a P4 value of hexadecimal 20 to
the $QIOW service. For output to a terminal, this value is a
carriage control specifier indicating the following sequence:
line feed, print buffer contents, return.

Return Status, Privilege Restrictions, Resources Required/Returned,
Additional Notes

See the description of the Queue I/0 Request ($QIO0) system
service for details.

130

SPURGWS - PURGE WORKING SET

$PURGWS

$PURGWS - PURGE WORKING SET
The Purge Working Set system service enables a process to remove pages

from 1its current working set to reduce the amount of physical memory
occupied by the current image.

Macro Format

SPURGWS inadr

High-Level Language Format
SYSSPURGWS (inadr)

inadr

Address of a 2-longword array containing the starting and ending
virtual addresses of the pages to be potentially purged from the
working set, The $PURGWS system services locates pages within
this range that are in the current working set and removes them.

If the starting and ending virtual addresses are the same, only
that single page 1is a candidate for purging. Only the virtual

page number portion of the wvirtual addresses 1is used; the
low-order 9 bits are ignored.

Return Status
SSS_NORMAL

Service successfully completed.

SS$_ACCVIO

The input address array cannot be read by the caller.

Notes

To purge the entire working set, the caller can specify a range
of pages from 0 through 7FFFFFFF. The image continues executing,
and pages that are needed are brought back into the working set
as the page faults occur.

131

$PUTMSG - PUT MESSAGE

$PUTMSG

$PUTMSG - PUT MESSAGE

The Put Message system service is a generalized message formatting and

output routine used by the operating system to write informational and
error messages to user processes,

Detailed information on the format of the message argument vector and
the use of this service follows the "Return Status" description.

Macro Format

SPUTMSG msgvec ,[actrtn] , [facnam]

High-Level Language Format

SYS$SPUTMSG (msgvec , [actrtn] ,[facnam])

msgvec

Address of a message argument vector that 1lists the message
identifications of messages to be output and FAO arguments
associated with each message, if any. The format of the message
vector is described later in this section.

actrtn

Address of the entry mask of a user-specified action routine to
receive control during message processing. The action routine
receives control after a message is formatted but before it is
actually written to the wuser. If no address is specified, or
specified as 0 (the default), it indicates that there 1is no
action routine,

facnam

Address of a character string descriptor pointing to the facility
name to be used in the first or only message formatted by
SPUTMSG.

If not specified, the default facility name associated with the
message is used in the first message.

Return Status

SS$_NORMAL

Notes

Service successfully completed.

1. SPUTMSG returns the first message with the percent sign (%)
prefix in front of the message. By convention, messages
after the first message in a series are prefixed with a
hyphen (-).

132

SPUTMSG - PUT MESSAGE

2., This service does not check the length of the argument 1list,
and therefore cannot return the SS$ INSFARG (insufficient
arguments) error status code. If the service does not
receive enough arguments (for example, if you omit required
commas in the call), you might not get the desired result.

Format of the Message Argument Vector for $PUTMSG

The general format of a message argument vector 1is as shown below.
Messages with facility codes of either 0 (system status codes) or 1
(RMS status codes) vary from the basic format.

31 16 15 0

default message flags argument count

message identification

new message flags FAO count

first
message FAQ arguments
description

2nd, 3rd,...
message
descriptions

argument count

Specifies the total number of longwords in the message vector.

default message flags

Specifies a mask defining the portions of the message(s) to be
requested from the S$SGETMSG system service. If not specified, the
process default message flags are used. (These flags can be set
using the SET MESSAGE command; see the VAX/VMS Command Language
User's Guide.) If a mask is specified, it is passed to SGETMSG as
the FLAGS argument,

This mask establishes the default flags for each message in this
call wuntil a new set of flags (if any) is specified. That is,
each specified "new message flags" field sets a new default.

The bits in the mask and their meanings are:

Bit Value meaning
0 1 Include text of message
0 Do not include text of message
1 1 Include message identifier
0 Do not include message identifier
2 1 Include severity level indicator
0 Do not include severity level indicator
3 1 Include facility name
0 Do not include facility name

Bits 4 through 15 must be zeros.

133

$PUTMSG - PUT MESSAGE

message identification

32-bit numeric value that wuniquely identifies this message.
Messages can be identified by symbolic names defined for system
return status codes, RMS status codes, and so on.

FAO count

Number of FAO arguments for this message, if any, that follow in
the message vector. The FAO argument count is required for any
message identifier for which the facility code is other than 0
{the system) or 1 (RMS). If a message with any other facility
code has no associated FAO arguments, the FAO argument count must
be specified as 0, unless the message identifier is the final
item in the message vector.

new message flags

New mask for the $GETMSG flags, defining a new default for this
message and all subsequent messages.

FAO arguments...
FAO arguments required by the message.
2nd, 3rd,... message descriptions

Descriptions of next associated messages, if messages are 1linked
in a series.

Message identifications for system status codes, system exception
condition values, and RMS status codes are handled as follows:

1. If the status code is a system message (that 1is, it has a
facility code of 0), an FAO argument count, new messages
flags, or FAO arguments cannot be specified. Each longword
in the 1list (following the first message identification) is
treated as an additional message identification.

2. If the message identification is a system exception message
number (for example, SS$ COMPAT), the FAO arguments for the
message must immediately follow the message identification in
the message vector. SPUTMSG determines the count of FAO
arguments from the message number.

Note that the format of the message argument vector for an
exception condition status <code is identical to the signal
array argument list passed to a condition handler when the
system signals an exception condition,

3. If the message identification is an RMS status code (that is,
it has a facility code of 1), you must specify a second
longword following the status code in place of the FAO
argument count and new message flags. This longword is
reserved for an RMS status value (STV) for those RMS messages
that have status values associated with them. If the status
code has no STV value associated with it, SPUTMSG ignores the
second longword. SPUTMSG uses the STV wvalue as an FAO
argument or as another message identification, depending on
the value of the RMS message number.

No FAO arguments can be specified for RMS status codes. If
specified, SPUTMSG treats them as additional message
identifiers.

134

$PUTMSG - PUT MESSAGE

The following example shows a message argument vector that requests
$PUTMSG to output:

1. The complete message associated with the system status code

SS$_ABORT
2. The complete message associated with the system status code
RMS$_FNF
VECTORS LONG 3) SARGUMENT COUNT & NULL M5G. FLAGS
LONG BSELARORT SARORT MESSAGE
HLONG RMSS.FNF SETLE NOT FOUND MESSAGE
LONG O FNULL 8TV PARAMETER
FFPUTMSG..8 MSGUED=VECTOR

When this message vector has been processed, the following messages
are written to the current SYSSOUTPUT device (and to SYSSERROR, if it
is different):

ABYSTEM-F-ARORTy atyort
- F M Ny File not Touwnd

Using the $PUTMSG System Service

SPUTMSG retrieves a message from the system message file by calling
the Get Message ($GETMSG) system service and formats the message by
calling the Formatted ASCII Output ($FAO) system service, if
necessary.

The Put Message ($PUTMSG) system service writes one or more formatted
messages to a process's current output and/or error devices, A
message is written after an action routine specified in the call to
SPUTMSG, 1if any, returns control with a successful status value. If
there is no action routine, the message is always written.

The actual disposition of each message depends on the severity level
of the status value associated with the message. The following table
indicates:

e Whether the message is written to the <current output device
(SYSSOUTPUT)

e Whether the message is written to the current error device
(SYSSERROR)

e Whether the message cancels the effect of CTRL/0, that is, 1if
the message is displayed when the CTRL/0 function has canceled
all output to the terminal

Severity Written to Written to Cancels
Level SYSSOUTPUT SYSS$SERROR CTRL/O
Warning yes yes yes
Success yes no no
Error yes yes yes
Informational yes yes no
Severe error yes yes yes

135

$PUTMSG - PUT MESSAGE

SGETMSG Processing - The SGETMSG system service returns a message
string based on the numeric status code value passed to it. The
content of the string returned depends on the flags, if any, specified
in the message argument vector. You can request that the message
include or not include the facility name, severity 1level, message
code, or text. The following example shows a message vector that
requests only the text portion of the message associated with the
system status code SS$_DUPLNAM:

VECTOR? JWORD 1 FARGUMENT COUNT
SHORYE TEROO0 sMOG. FLAGS -~ TEXT ONLY
JLONG 864 DUPLNAM SMESSAGE TIENTIFICATION

If this message vector is specified for a call to $SPUTMSG, $PUTMSG
outputs the message:

chuslicate Process name

SGETMSG uses the facility code in the message identification to obtain
the facility name string to insert in a message. Each system
component has a unique code. The facility code is contained 1in bits
16 through 27 of the message identification. For example, the system
has facility code of 0, the command interpreter is 1, the debugger is
2, and so on.

You can override the facility name by specifying the FACNAM argument
to SPUTMSG. For example:

Fae s SASCIH AHELLDS SOESCRIFYTOR FOR NEW FACTLITY NAME
VECTORS: LONG 1 ARG, COUNTy NO MSG. FLAGS
SLONG S8$.NOPRIV SMESSAGE TDENTIFICATION

$FUTMES..S MOEGVEC=VECTOR y FACNAM=F AL
This call to $PUTMSG results in the message:
AHELLD~F-NOPRIV: no erivilesge for atblemsbled oreration

You can modify a facility code in a message identification before
calling $PUTMSG by changing bits 16 through 27. For example, a system
status code can be specified as follows:

LONG 2016664 code

In this example, the facility number 2 1is inserted 1in the message
identification. You <can override the facility name string DEBUG in
the message by specifying message flags in the argument vector to
suppress the facility name, or you can use the FACNAM argument to
SPUTMSG to specify an alternate facility name.

This technique allows you to use shared system message codes that have
associated FAQ arguments., If you do not modify the facility number in
the shared system message identifications, you cannot specify FAO
arguments,

When a message identification contains an unknown facility code,

$GETMSG places the string NONAME in place of the facility name in the
message string.

136

$PUTMSG - PUT MESSAGE

$FAO Processing - If the string returned by $GETMSG contains any FAO
directives, and if the facility code is other than 0 or 1, SPUTMSG
calls the $FAO system service to format the message. SPUTMSG calls
SFAO with the argument count and arguments specified in the message
argument vector.

The FAO argument count, if any, for a message is 1indicated in the
message file that defines the message text. The message text itself
contains embedded FAO directives. You can examine the message text to
determine the arguments required by FAO. For example, the message
text associated with the system status code SHRS_BEGIN is defined as:

!AS beginning

This text requires the address of a character string descriptor
pointing to the text to be substituted in place of the FAO directive
!AS. (For details on how to use FAO and how to specify arguments for
other FAQO directives, see the description of the $FAOQ system service.)

To use $PUTMSG to access and/or output a system shared message that
has FAO arguments associated with it, you must change the facility
code. The following example shows a message vector, including the FAO
argument count and argument, to output the message associated with the
status code SHR$_BEGIN.

VECTORS <WIORD 3 SAORGUMENT COUNT (LONGWORDS)
SWORDE TROOOL FMESSAGE FLAGYH
LONG 2014 TSHRSLBEGIN SMESSAGE ITENTIFICATION
CWORD L FFA0 ARGUMENT COUNT
SWORD O SN0 NEW MSG. FLGES.
LONG NAME AN ARGUMENMT

NAME 2 CABCTIN APUTHMEE tests/
When SPUTMSG is called with this message vector, it displays the line:
FUTMEG tests Deginning

Note that the facility code in the message identification is modified
to allow the specification of FAO arguments; and that the message
flags in the second word of the vector suppresses the printing of
facility name, severity level, and message code.

The Action Routine - The action routine, if any, is called as a normal
procedure each time a message is formatted, but hefore it is actually
output. The action routine receives as an argument the address of a
character string descriptor pointing to the formatted message. The
action routine can access the message text, scan it, write it to a
user-specified file or device, modify it, and so on.

On return from the action routine, S$PUTMSG examines the completion
code from the routine specified in Register 0. If the completion code
indicates success (any odd numeric value), $PUTMSG outputs the message
as described earlier under "Using the $PUTMSG System Service." If the
completion code indicates non-success (any even numeric value),
SPUTMSG does not output the message.

137

$0I0 - QUEUE I/O REQUEST

$QI0

$0I0 - QUEUE I/0 REQUEST

The Queue I/0 Request system service 1initiates an input or output
operation by queueing a request to a channel associated with a
specific device. Control returns immediately to the issuing process,
which can synchronize I/0 completion in one of three ways:

1. Specify the address of an AST routine that is to execute when
the I/0 completes.

2. Wait for a specified event flag to be set.

3. Poll the specified I/0 status block for a completion status.
The event flag and I/0 status block, if specified, are cleared before
the I/0 request is queued.
Macro Format

$QI0 [efn] ,chan ,func ,[iosb] ,[astadr] ,[astprm]

(Ip11 ,[p2] ,I[p31 ,I[p4] ,I[p5] ,Iph]

High-~-Level Language Format

SYS$QI10([efn] ,chan ,func ,[iosb] ,fastadr] ,[astprm]
[Pl ,[p2]1 ,[p31 ,[p4] ,I[p5] ,I[p6])

efn

Number of the event flag that is to be set at request completion.
If not specified, it defaults to 0.

chan

Number of the I/0 channel assigned to the device to which the
request is directed.

func

Function code and modifier bits that specify the operation to be
performed. The code 1is expressed symbolically. For reference
purposes, the function codes are listed in Appendix A, Section
A.2. Complete details on valid I/0 function codes and parameters
required by each are documented in the VAX/VMS 1/0 User's Guide.

iosb

Address of a quadword I/O status block that is to receive final
completion status.

astadr
Address of the entry mask of an AST service routine to be
executed when the I/O completes. 1If specified, the AST routine

executes at the access mode from which the $QI0 service was
requested.

138

$0I0 - QUEUE I/O REQUEST

astprm
AST parameter to be passed to the AST service routine.

pl to pé6

Optional device- and function-specific I/0 request parameters.

The first parameter may be specified as Pl or PlV, depending

on

whether the function code requires an address or a value,
respectively. If the keyword is not used, Pl is the default;

that is, the argument is considered an address.

P2 through Pn are always interpreted as values,

Return Status
SSS_NORMAL

Service successfully completed. The 1I/0 request packet
successfully queued.

SS$_ABORT
A network logical link was broken.
SS$_ACCVIO
The I/0 status block cannot be written by the caller.

This status code may also be returned if parameters
device-dependent function codes are incorrectly specified.

SS$_DEVOFFLINE

was

for

The specified device is offline, that is, not currently available

for use.
SS$_EXQUOTA

The process has exceeded 1its buffered I/0 quota, direct

1/0

quota, or buffered I/O byte count quota and has disabled resource
wait mode with the Set Resource Wait Mode (SSETRWM) system

service; or the process has exceeded its AST limit quota.
SS$_ILLEFC

An illegal event flag number was specified.
SS$_INSFMEM

Insufficient system dynamic memory is available to complete

the

service, and the process has disabled resource wait mode with the

Set Resource Wait Mode ($SETRWM) system service,

SS$_IVCHAN

An invalid channel number was specified, that 1is, a channel
number of 0 or a number larger than the number of channels

available.

139

$Q0I0 - QUEUE I/0 REQUEST

SS$_NOPRIV

The specified channel does not exist or was assigned from a more
privileged access mode.

SS$_UNASEFC

The process is not associated with the cluster containing the
specified event flag.

Privilege Restrictions

The Queue I/0 Request system service can be performed only on
assigned I/0 <channels and only from access modes that are equal
to or more privileged than the access mode from which the
original channel assignment was made.

Resources Required/Returned

1. Queued I1/0 requests use the process's quota for buffered I/0
(BIOLM) or direct 1I/0 (DIOLM); the process's buffered I/0
byte count (BYTLM) quota; and, if an AST service routine is
specified, the process's AST limit quota (ASTLM).

2. System dynamic memory is required to construct a data base to
queue the I/0 request. Additional memory may be required on
a device-dependent basis.

1. The specified event flag is set if the service terminates
without queuing an I/O request.

2. The I/O status block has the format:
31 16 15 0

count status

device-dependent information

status
Completion status of the I/0 request.
byte count
Number of bytes actually transferred.
device and function dependent information
Varies according to the device and operation being
performed. The information returned for each device and

function code is documented in the VAX/VMS 1I/0 User's
Guide.

140

4,

$QI0 - QUEUE I/O REQUEST

Many services return character string data and write the
length of the data returned in a word provided by the caller.
Function codes for the $QI0 system service (and the LENGTH
argument of the S$SOUTPUT system service) require 1length
specifications in longwords. 1If lengths returned by other
services are to be used as input parameters for $QIO
requests, a longword should be reserved to ensure that no
error occurs when $QIO reads the length.

For information on performing input and output operations on
a network, see the DECnet-VAX User's Guide.

For examples of the $QI0 system service, including the use of event

flags,

AST service routines, and an I/0 status block, see Chapter 6,

"Input/Output Services."

141

$QIOW - QUEUE I/0 REQUEST AND WAIT FOR EVENT FLAG

s$Qlow

$QIOW - QUEUE I/0O REQUEST AND WAIT FOR EVENT FLAG
The Queue I/0O Request and Wait for Event Flag system service combines

the $QI0 and $SWAITFR (Wait for Single Event Flag) system services. It
can be used when a program must wait for I/0 completion.

Macro Format

SQIOW [efn] ,chan ,func ,[iosb] ,[astadr] ,[astprm]
. [p11 ,[p2] ,[p3] ,[p4] ,Ip5] ,I[p6]

High-Level Language Format

SYS$SQIOW([efn] ,chan ,func ,[iosb] ,[astadr] ,[astprm]
[pl]l ,[p2] ,[p31 ,[(p4] ,[pP5]1 ,[p6])

efn
Number of the event flag that is to be set at request completion.
If not specified, it defaults to 0.

chan
Number of the I/0 channel assigned to the device to which the
request is directed.

func
Function code and modifier bits that specify the operation to be
performed. The code is expressed symbolically.

iosb
Address of a quadword I/O status block that is to receive final
completion status.

astadr

Address of the entry mask of an AST service routine to be
executed when the I/0 completes. If specified, the AST routine
executes at the access mode from which the $QI0 service was
requested.

astprm
AST parameter to be passed to the AST completion routine.

Pl to pé6
Optional device- and function-specific I/0 request parameters.
The first parameter may be specified as Pl or PlV, depending on
whether the function code requires an address or a value,
respectively. If the keyword is not used, Pl 1is the default;

that is, the argument is considered an address.

P2 through Pn are always interpreted as values.

142

SQIOW - QUEUE I/O REQUEST AND WAIT FOR EVENT FLAG
Return Status, Privilege Restrictions, Resources Required/Returned,
Notes

See the description of the $QIO0 system service for details.

143

$READEF - READ EVENT FLAGS

SREADEF

$READEF - READ EVENT FLAGS

The Read Event Flags system service returns the current status of all
32 event flags in a local or common event flag cluster.

Macro Format

SREADEF efn ,state

High-Level Language Format

efn

state

SYSSREADEF (efn ,state)

Number of any event flag within the cluster to be read. A flag
number of 0 through 31 specifies cluster 0, 32 through A3
specifies cluster 1, and so forth.

Address of a longword to receive the current status of all event
flags in the cluster.

Return Status

SS$_WASCLR

Service successfully completed. The specified event flag is
clear.

5S$_WASSET

Service successfully completed. The specified event flag is set,

SS$_ACCVIO

The longword that is to receive the current state of all event
flags in the cluster cannot bhe written by the caller.

§S$_ILLEFC

An illegal event flag number was specified.

SS$_UNASEFC

The process is not associated with the <cluster containing the
specified event flag.

144

SRESUME - RESUME PROCESS

$SRESUME

SRESUME - RESUME PROCESS

The Resume Process system service causes a process previously
suspended by the Suspend Process ($SUSPND) system service to resume
execution, or cancels the effect of a subsequent suspend request.

Macro Format

SRESUME [pidadr] , [prcnam]

High-Level Language Format
SYSSRESUME ([pidadr] , [prcnam])
pidadr

Address of a longword containing the process 1identification of
the process to be resumed.

prcnam

Address of a character string descriptor pointing to the 1- to
15-character process name string. The process name is implicitly
qualified by the group number of the process issuing the resume
request.

If neither a process identification nor a process name is specified,
the resume request is for the caller. For details on how the service
interprets the PIDADR and PRCNAM arguments, see Table 7-1 in Chapter
7, "Process Control Services."
Return Status
SS$_NORMAL
Service successfully completed.
SS$_ACCVIO
The process name string or string descriptor cannot be read by
the caller, or the process identification cannot be written by
the caller.

SS$_IVLOGNAM

The specified process name has a length of 0, or has more than 15
characters.

SS$_NONEXPR

Warning. The specified process does not exist, or an invalid
process identification was specified.

§S$_NOPRIV

The process does not have the privilege to resume the execution
of the specified process.

145

$RESUME - RESUME PROCESS

Privilege Restrictions
User privileges are required to resume execution of:
e Other processes in the same group (GROUP privilege)

e Any other process in the system (WORLD privilege)

Notes

If one or more resume requests are issued for a process that is
not suspended, a subsequent suspend request completes
immediately, that is, the process is not suspended. No count is
maintained of outstanding resume requests.

For more information on process suspension see Section 7.5, "Process
Hibernation and Suspension."

146

$SCHDWK - SCHEDULE WAKEUP

$SCHDWK

$SCHDWK - SCHEDULE WAKEUP

The Schedule Wakeup system service schedules the awakening of a
process that has placed itself in a state of hibernation with the
Hibernate ($SHIBER) system service. A wakeup can be scheduled for a
specified absolute time or for a delta time. Optionally, the request
can specify that the wakeup is to be repeated at fixed intervals.

Macro Format

SSCHDWK [pidadr] ,[prcnam] ,daytim ,[reptim]

High-Level Language Format
SYS$SCHDWK ([pidadr] ,{prcnam] ,daytim ,[reptim])
pidadr

Address of a longword containing the process identification of
the process to be awakened.

prcnam

Address of a character string descriptor pointing to the 1- to
15-character process name string. The process name is implicitly
qualified by the group number of the process issuing the schedule
wakeup request.

daytim

Address of a quadword containing the expiration time 1in the
system 64-bit time format. A positive time value indicates an
absolute time at which the specified process is to be awakened.
A negative time value indicates an offset (delta time) from the
current time.

reptim

Address of a quadword containing the time interval (expressed in
delta time format) at which to repeat the wakeup request, If not
specified, it defaults to 0, which indicates that the request is
not to be repeated.

If neither a process identification nor a process name 1is specified,
the scheduled wakeup request is for the caller., For details on how
the service interprets the PIDADR and PRCNAM arguments, see Table 7-1
in Chapter 7, "Process Control Services."

147

$SCHDWK - SCHEDULE WAKEUP

Return Status

SS$_NORMAL

Service successfully completed.

SS$_ACCVIO

The expiration time, repeat time, process name string or string
descriptor cannot be read by the caller, or the process
identification cannot be written by the caller.

SS$_EXQUOTA

The process has exceeded its AST limit quota.

SS$_INSFMEM

Insufficient system dynamic memory is available to allocate a
timer queue entry, and the process has disabled resource wait
mode with the Set Resource Wait Mode (SSETRWM) system service.

SS$_IVLOGNAM

The process name string has a length of 0 or has more than 15
characters.,

SS$_IVTIME

The specified delta repeat time is a positive wvalue, or an
absolute time ©plus delta repeat time is less than the current
time.

SS$_NONEXPR

Warning. The specified process does not exist, or an invalid
process identification was specified.

SS$_NOPRIV

The process does not have the privilege to schedule a wakeup
request for the specified process.

Privilege Restrictions

User privileges are required to schedule wakeup requests for:
e Other processes in the same group (GROUP privilege)

e Any other process in the system (WORLD privilege)

Resources Required/Returned

A scheduled wakeup request uses the caller's AST 1limit quota
(ASTLM) and requires system dynamic memory to allocate a timer
queue entry.

148

$SCHDWK -~ SCHEDULE WAKEUP

Notes

1. If one or more scheduled wakeup requests are issued for a
process that 1is not hibernating, a subsequent hibernate
request by the target process completes immediately, that is,
the process does not hibernate. No count is maintained of
outstanding wakeup requests.

2. Scheduled wakeup requests that have not yet been processed
can be canceled with the Cancel Wakeup ($SCANWAK) system
service.

3. If a specified absolute time value has already passed and no
repeat time is specified, the timer expires at the next clock
cycle (that is, within 10 milliseconds).

4., A repeat time value cannot be 1less than 10 milliseconds.
(Any smaller value is increased automatically to 10
milliseconds.)

For an example of the $SCHDWK system service, and for information on
how to format a system time value for input to this service, see
Chapter 8, "Timer and Time Conversion Services." For more information
on process hibernation and waking, see Chapter 7, "Process Control
Services."

149

$SETAST - SET AST ENABLE

$SETAST

SSETAST - SET AST ENABLE

The Set AST Enable system service enables or disables the delivery of
ASTs for the access mode from which the service call was issued.

Macro Format

S$SETAST enbflg

High-Level Language Format
SYS$SETAST (enbflg)

enbflg
AST enable indicator. A value of 1 enables AST delivery for the
calling access mode. A value of 0 disables AST delivery.

Return Status

55$_WASCLR

Service successfully completed. AST delivery was previously
disabled for the calling access mode.

SS$_WASSET
Service successfully completed. AST delivery was previously

enabled for the calling access mode.

Notes

1. When an image is executing in user mode, the system keeps
ASTs enabled for all higher access modes. If a higher access
mode disables AST delivery, it should reenable ASTs for its
own access mode before returning to a lower access mode.

2. If an AST is queued for an access mode that has disabled AST
delivery, the system cannot deliver ASTs to less privileged
access modes until the access mode reenables AST delivery.

For additional notes on AST delivery and the usage of ASTs, see
Chapter. 4, "Asynchronous System Trap (AST) Services."

150

$SETEF - SET EVENT FLAG

$SETEF

$SETEF - SET EVENT FLAG
The Set Event Flag system service sets an event flag in a local or
common event flag cluster to 1. Any processes waiting for the event
flag are made runnable.

Macro Format

$SSETEF efn

High-Level Language Format
SYSSSETEF (efn)
efn

Number of the event flag to be set,

Return Status
SS$_WASCLR

Service successfully completed. The specified event flag was
previously 0.

SS$_WASSET

Service successfully completed. The specified event flag was
previously 1.

SS$_ILLEFC
An illegal event flag number was specified.
SSS_UNASEFC

The process is not associated with the cluster containing the
specified event flag.

For an example of the $SETEF system service and more information on

event flags and event flag ‘clusters, see Chapter 3, "Event Flag
Services."

151

$SETEXV - SET EXCEPTION VECTOR

$SETEXV

$SETEXV - SET EXCEPTION VECTOR

The Set Exception Vector system service assigns a condition handler
address to an exception vector or cancels an address previously
assigned to a vector.

Macro Format

SSETEXV [vector] ,[addres] ,[acmode] ,[prvhnd]

High-Level Language Format
SYS$SETEXV([vector] ,[addres] ,[acmode] , [prvhndl])

vector

Vector number. A value of 0 (the default) indicates that the
primary vector 1is to be modified. A value of 1 indicates that
the secondary vector is to be modified. A value of 2 indicates
that a last chance exception vector is to be modified.

addres

Condition handler address. If not specified or specified as O,
it indicates that there 1is no condition handler or that the
vector is to be canceled. 1If an address is specified, it is the
address of the entry mask of the condition handler.

acmode
Access mode for which the exception vector is to be modified.
The access mode of the caller is maximized with the specified
access mode to determine which vector to modify.

prvhnd

Address of a longword to receive the previous contents of the
vector.

Return Status
SS$_NORMAL

Service successfully completed.
SS$_ACCVIO

The longword that is to receive the previous contents of the
vector cannot be written by the caller.

Privilege Restrictions

A process cannot modify a vector associated with a more
privileged access mode.

152

3.

Condition

SSETEXV - SET EXCEPTION VECTOR

Condition handlers are normally declared on the procedure
call stack.,

The primary exception vector and the last chance exception
vector are used by the system debugger. The command
interpreter uses the last chance exception vector.

User mode exception vectors are canceled at image exit.

handling and conventions for coding condition-handling

routines are described in Chapter 9, "Condition-Handling Services."

153

$SETIME - SET SYSTEM TIME

$SETIME

$SETIME - SET SYSTEM TIME

The Set System Time service causes the current system time to be
changed or recalibrated.

Macro Format

SSETIME [timadr]}

High-level Language Format
SYSS$SSETIME ([timadr])

timadr

Address of a quadword that contains the time (in 64-bit format)
that will become the new current system time., If the argument is
not specified or 1is specified as 0, the current time is
recalibrated using the processor's hardware time-of-year clock.
A negative (delta) time value is invalid.

Return Status

SS$_NORMAL
Service successfully completed.

SS$_ACCVIO

The quadword that contains the new system time value cannot be
read by the caller.

SS$_NOIOCHAN

No I/0 channel is available for assignment. (See Note 2.)

SS$_NOPRIV

The process does not have the privileges to set the system time.
Privilege Restrictions

The operator (OPER) and logical I/O (LOG_IO) user privileges are
required to set the system time.

154

Notes

$SETIME - SET SYSTEM TIME

Any change to the system time does not change the interval
remaining for any existing timer requests. This is true for
both absolute and delta time requests.

The S$SETIME service saves the new time (for future reboots)
in the system 1image SYS$SYSTEM:SYS.EXE. To save the time,
the service assigns a channel to the system boot device and

calls the $QIOW service. This I/0 operation requires the
LOG_IO user privilege.

For further information and an example using this service, see Section
8.8, "Setting the System Time."

155

$SSETIMR - SET TIMER

$SETIMR

$SETIMR - SET TIMER
The Set Timer system service allows a process to schedule the setting
of an event flag and/or the queuing of an AST at some future time.

The time for the event can be specified as an absolute time or as a
delta time.

Macro Format

SSETIMR [efn] ,daytim ,[astadr] ,[regidt]

High-Level Language Format

SYSSSETIMR([efn] ,daytim ,[astadr] ,[reqidt])

efn
Event flag number of the event flag to set when the time interval
expires. If not specified, it defaults to 0.

daytim
Address of the quadword expiration time. A positive time wvalue
indicates an absolute time at which the timer is to expire. A
negative time value indicates an offset (delta time) from the
current time.

astadr
Address of the entry mask of an AST service routine to be called
when the time interval expires., If not specified, it defaults to
0, indicating no AST is to be queued.

reqidt

Number indicating a request identification., If not specified, it
defaults to 0. A unique request identification can be specified
in each set timer request, or the same identification <can be
given to related timer requests. The identification can be used
later to cancel the timer request(s). If an AST service routine
is specified, the identification is passed as the AST parameter.

Return Status
SS$_NORMAL
Service successfully completed.
558$_ACCVIO
The expiration time cannot be read by the caller.
SSS_EXQUOTA
The process exceeded its quota for timer entries or its AST limit
quota; or there 1is insufficient system dynamic memory to

complete the request and the process has disabled resource wait
mode with the Set Resource Wait Mode ($SETRWM) system service.

156

$SETIMR - SET TIMER

S§S$_ILLEFC
An illegal event flag number was specified.

SS$_INSFMEM
Insufficient dynamic memory is available to allocate a timer
queue entry and the process has disabled resource wait mode with
the Set Resource Wait Mode (SSETRWM) system service,

SS$_UNASEFC

The process is not associated with the cluster containing the
specified event flag.

Resources Required/Returned
1., The Set Timer system service requires dynamic memory.

2. The Set Timer system service uses the process's quota for
timer queue entries (TQELM) and, if an AST service routine is
specified, the process's AST limit quota (ASTLM).

1. The access mode of the caller 1is the access mode of the
request and of the AST.

2, If a specified absolute time value has already passed, the
timer expires at the next clock cycle (that is, within 10
milliseconds).

3. The Convert ASCII String to Binary Time ($BINTIM) system
service converts a specified ASCII string to the quadword
time format required as input to the $SSETIMR service.

For examples of the S$SETIMR system service, see Chapter 8, "Timer and

Time Conversion Services." For an example of an AST service routine,
see Chapter 4, "AST (Asynchronous System Trap) Services."

157

$SETPRA -~ SET POWER RECOVERY AST

$SETPRA

$SETPRA -~ SET POWER RECOVERY AST

The Set Power Recovery AST system service establishes a routine to
receive control using the AST mechanism after a power recovery is
detected.

Macro Format

SSETPRA astadr , [acmode]

High-Level Language Format
SYSSSETPRA (astadr , [acmode])

astadr
Address of the entry mask for a power recovery AST routine. An
address of 0 indicates that power recovery AST notification for
the process is disabled.

acmode
Access mode at which the power recovery AST routine is to
execute. The specified access mode is maximized with the access
mode of the caller to determine the access mode to use.

Return Status

SS$_NORMAL
Service successfully completed.

SSs$_EXQUOTA

The process exceeded its quota for outstanding AST requests.

Resources Required/Returned

The $SETPRA system service uses the process's AST 1limit quota
(ASTLM) .

Notes

1. The AST parameter contains the amount of time that the power
was off in hundredths of seconds.

2. Only one power recovery AST routine can be specified for a
process. The AST entry point address is cleared at image
exit.

3. The entry and exit conventions for the power recovery AST
routine are the same as for all AST service routines. These
conventions are described in Chapter 4, "Asynchronous System
Trap (AST) Services."

158

$SETPRI - SET PRIORITY

$SETPRI

$SETPRI - SET PRIORITY

The Set Priority system service changes a process's base priority.
The system scheduler uses the base priority to determine the order in
which executable processes are to run.

Macro Format

$SETPRI [pidadr] ,[prcnam] ,pri ,[prvpri]

High-Level Language Format
SYSS$SETPRI ([pidadr] ,[prcnam] ,pri ,[prvpril)
pidadr

Address of the process 1identification of the process whose
priority is to be set.

prcnam

Address of a character string descriptor pointing to a 1- to
15-character process name string. The process name is implicitly
qualified by the group number of the process issuing the set
priority request.

pri
New base priority to be established for the process. The new
priority is contained in bits 0 through 4 of the argument.
Normal priorities are in the range 0 through 15, and real-time
priorities are in the range 16 through 31, ’
If the specified priority is higher than the <caller's priority,
and 1if the caller does not have the privilege to set the target
process's priority to a value higher than its own, the caller's
priority is used.

prvpri

Address of a longword to receive the previous base priority of
the specified process.

If neither a process identification nor a process name is specified,
the set priority request is for the caller. For details on how the
service interprets the PIDADR and PRCNAM arguments, see Table 7-1 in
Chapter 7, "Process Control Services."

159

$SETPRI - SET PRIORITY

Return Status

SS$_NORMAL
Service successfully completed.

SS$_ACCVIO
The process name string or string descriptor cannot be read by
the caller, or the process identification or previous priority
longword cannot be written by the caller.

SS$_IVLOGNAM

The process name string has a length of 0, or has more than 15
characters.

SS$_NONEXPR

Warning. The specified process does not exist, or an invalid
process identification was specified.

SS$_NOPRIV
The process does not have the privilege to set the specified
priority for the specified process.

Privilege Restrictions
User privileges are required to:

® Change the priority for other processes in the same group
(GROUP privilege)

e Change the priority for any other process in the system (WORLD
privilege)

e Set any process's priority to a value greater than one's own
initial base priority (ALTPRI privilege)
Notes

A process's base priority remains in effect until specifically
changed or until the process is deleted.

160

$SETPRN - SET PROCESS NAME

$SETPRN

$SETPRN - SET PROCESS NAME

The Set Process Name system service allows a process to establish or
to change its own process name.

Macro Format

SSETPRN [prcham]

High-Level Language Format
SYSSSETPRN ([prcnam])

prcnam
Address of a character string descriptor pointing to the 1- to
15-character process name string. The process name is implicitly
qualified by the group number of the caller. If not specified,
or specified as 0, the process's current name is deleted.

Return Status

SS$_NORMAL
Service successfully completed.

SS$_ACCVIO

The process name string or string descriptor cannot be read by
the caller.

SS$_DUPLNAM

The specified process name duplicates one already specified
within that group.

SS$_IVLOGNAM
The specified process name has a length of 0 or has more than 15
characters.,

Notes

1. A process name remains in effect until specifically changed
or until the process is deleted.

2. Process names provide an identification mechanism for
processes executing with the same group humber. Processes
can also be identified by process identifications.

For an example of the $SETPRN system service, and details on process

identification and system services providing process control
functions, see Chapter 7, "Process Control Services."

161

$SETPRT - SET PROTECTION ON PAGES

$SETPRT

$SETPRT - SET PROTECTION ON PAGES

The Set Protection On Pages system service allows an image running in
a process to change the protection on a page or range of pages.

Macro Format

SSETPRT 1inadr ,[retadr] ,[acmode] ,prot ,[prvprt]

High-Level Language Format

SYSSSETPRT (inadr ,[retadr] ,[acmode}l ,prot ,([prvprt])

inadr

Address of a 2-longword array containing the starting and ending
virtual addresses of the pages on which protection is to be
changed. 1If the starting and ending virtual addresses are the
same, a single page 1is changed. Only the virtual page number
portion of the virtual address is used; the low-order 9 bits are
ignored.

retadr

Address of a 2-longword array to receive the starting and ending
virtual addresses of the pages that had their protection changed.

acmode

prot

Access mode on behalf of which the request is being made. The
specified access mode 1is maximized with the access mode of the
caller, The resultant access mode must be equal to or more
privileged than the access mode of the owner of each page in
order to change the protection.

New protection specified in bits 0 through 3 in the format of the
hardware page protection. The high-order 28 bits are ignored.
Symbolic names defining the protection codes are 1listed in

Appendix A, Section A.5 "$SPRTDEF - Hardware Protection Code
Definitions."

If the protection is specified as 0, the protection defaults to
kernel read-only.

prvprt

Address of a byte to receive the protection previously assigned
to the last page whose protection was changed. This argument is
useful only when protection for a single page is being changed.

162

$SETPRT - SET PROTECTION ON PAGES

Return Status
SS$_NORMAL
Service successfully completed.
§S$_ACCVIO
1. The input address array cannot be read by the caller, or the
output address array or the byte to receive the previous

protection cannot be written by the caller.

2. An attempt was made to change the protection of a nonexistent
page.

SS$_EXQUOTA

The process exceeded its paging file quota while changing a page
in a read-only private section to a read/write page.

SS$_IVPROTECT

The specified protection code has a numeric wvalue of 1 or is
greater than 15.

SS$_LENVIO

A page in the specified range is beyond the end of the program or
control region.

SS$_NOPRIV
A page in the specified range is in the system address space.
SS$_PAGOWNVIO

Page owner violation. An attempt was made to ~change the
protection on a page owned by a more privileged access mode.

Privilege Restrictions
For pages in global sections, the new protection can alter only
the accessibility of the page for modes less privileged than the
owner of the page.

Resources Required/Returned
If a process changes any ©pages in a private section from
read-only to read/write, the service uses the process's paging
file quota (PGFLQUOTA).

Notes

If an error occurs while changing page protection, the return
array, 1if requested, indicates the pages that were successfully

changed before the error occurred. If no pages have been
affected, both longwords in the return address array contain a
-lo

163

$SETPRV - SET PRIVILEGES

$SETPRV

$SETPRV - SET PRIVILEGES

The Set Privileges system service allows a process to enable or
disable specified user privileges.

Macro Format

SSETPRV [enbflg], [prvadr], [prmflg], [prvprv]

High-Level Language Format
SYSSSETPRV([enbflg], [prvadr], [prmflg], [prvprv])

enbflg

Enable indicator. A value of 1 indicates that the privileges
specified in the PRVADR argument are to be enabled. A value of
0, the default, indicates that the privileges are to be disabled.

prvadr

Address of a 64-bit mask defining the privileges to be enabled or
disabled. The mask is formed by setting the bits corresponding
to specific privileges (see Section 7.3.4 for an example).
Privilege bit settings are defined by the $PRVDEF macro, and the
symbolic names are listed in the PRVADR argument description for
the Create Process ($SCREPRC) service. If this argument is not
specified or is specified as 0, the privileges are not altered.

prmflg

Permanent indicator. A value of 1 indicates that the specified
privileges are to be permanently enabled or disabled, that is,
until they are again changed or until the process is deleted. A
value of 0, the default, indicates that the specified privileges
are to be enabled or disabled temporarily, that is, until the
current image exits (at which time the process's permanently
enabled privileges will be restored).

prvprv
Address of a quadword buffer to receive the previous privilege
mask. If this argument is not specified or is specified as 0,
the previous privileges mask is not returned.

Return Status

SS$_NORMAL
Service successfully completed. All specified privileges that
the process can enable (see "Privilege Restrictions") were

enabled, or all specified privileges were disabled.

SS$_ACCVIO

The privilege mask cannot be read or the previous privilege mask
cannot be written by the caller.

164

$SETPRV - SET PRIVILEGES

Privilege Restrictions

To enable a privilege permanently, at least one of the following
must be true: the process is authorized to set the specified

privilege (see Notes 1 and 2), or the process 1is executing in
kernel or executive mode.

To enable a privilege temporarily, at least one of the following
must be true: the process is authorized to set the specified
privilege (see Notes 1 and 2), the process is executing in kernel
or executive mode, or the image currently executing is a known
image installed with the specified privilege.

Notes

1. The system maintains four separate privilege masks for each
process:

e AUTHPRIV - Privileges that the process is authorized
to enable, as designated by the system manager or the
process creator., The AUTHPRIV mask never changes
during the life of the process.

® PROCPRIV - Privileges that are designated as
permanently enabled for the process. The PROCPRIV
mask can be modified by this service.

e IMAGPRIV - Privileges that the current image is
installed with.

® CURPRIV - Privileges that are currently enabled. The
CURPRIV mask can be modified by this service.

When a process 1is «created, 1its AUTHPRIV, PROCPRIV, and
CURPRIV masks have the same contents. Whenever a system
service (other than S$SETPRV) must check the process
privileges, it checks the CURPRIV mask. When a process runs
a known image, the privileges that the image was installed
with are enabled in the CURPRIV mask; when the known image
exits, the PROCPRIV mask is copied to the CURPRIV mask.

165

$SETPRV - SET PRIVILEGES

When the $SETPRV service checks whether the process has the
SETPRV privilege, it examines the AUTHPRIV mask. Therefore,
it is useless for a process to call this service to "give"
itself the SETPRV privilege, because the service can set bits
only in the CURPRIV and PROCPRIV masks.

You can obtain a process's privilege masks with the Get
Job/Process Information (SGETJPI) service. The item
identifier for a given mask is the mask name preceded by
JPIS (for example, JPI$ AUTHPRIV to obtain the mask of
privileges the process is authorized to enable).

You can also enable or disable process privileges with the
SET PROCESS/PRIVILEGES command (see the VAX/VMS Command
Language User's Guide).

166

$SETRWN - SET RESOURCE WAIT MODE

$SETRWM

$SETRWM - SET RESOURCE WAIT MODE

The Set Resource Wait Mode system service allows a process to indicate
what action a system service should take when it lacks a system
resource required for its execution:

e When resource wait mode is enabled (the default mode), the
service waits until a resource is available and then resumes
execution.

e When resource wait mode 1is disabled, the service returns
control to the caller immediately with a status code
indicating that a resource is unavailable.

Macro Format
$SETRWM [watflg]
High-Level Language Format

SYSSSETRWM ([watflg])

watflg

Wait indicator. A value of 0 (the default) indicates that
resources are to be awaited; this is the initial setting for
resource wait mode. A value of 1 indicates that failure status
should be returned immediately.

Return Status
S5$_WASCLR

Service successfully completed. Resource wait mode was
previously enabled.

SS$_WASSET

Service successfully completed. Resource wait mode was
previously disabled.

Notes

1. The following system resources and process quotas are
affected by resource wait mode:

e System dynamic memory

e UNIBUS adapter map registers

e Direct I/0 quota (DIOLM)

e Buffered I/0 quota (BIOLM)

e Buffered I/0 byte count limit (BYTLM)

2. If resource wait mode is disabled, it remains disabled until
it is explicitly reenabled or until the process is deleted.

167

SSETRWN - SET RESOURCE WAIT MODE

For further information on resource wait mode, see Section 2.1.5.4
(for MACRO programmers) or Section 2.2.2.3 (for high-level language
programmers).

168

$SSETSFM - SET SYSTEM SERVICE FAILURE EXCEPTION MODE

$SETSFM

$SETSFM - SET SYSTEM SERVICE FAILURE EXCEPTION MODE

The Set System Service Failure Exception Mode system service controls
whether a software exception 1s generated when an error or severe
error status code is returned from a system service call. Initially,
system service failure exceptions are disabled; the caller should
explicitly test for successful completion following a system service
call,

Macro Format

SSETSFM [enbflg]

High-Level Language Format
SYSSSETSFM([enbflg])
enbflg
Enable indicator. A value of 1 indicates that system service

failure exceptions are to be generated. A value of 0 (the
default) disables their generation.,

Return Status

SS$_WASCLR
Service successfully completed. Failure exceptions were
previously disabled.

SS$~WASSET
Service successfully completed. Failure exceptions were

previously enabled.

Notes

1. When enabled, system service failure exceptions are generated
only 1if the service <call originated from user mode., The
SSETSFM system service can be called, however, from any
access mode, If enabled, system service failure exception
mode remains enabled until explicitly disabled or until the
image exits.

2. If failure exceptions are enabled, a condition handler can be
specified in the first longword of the procedure call stack
or with the Set Exception Vector ($SETEXV) system service.
If no condition handler is specified by the user, a default
system handler is used. This condition handler causes the
image to exit and then displays the exit status.

3. The argument list provided to the condition handler has the

code SS$_SSFAIL in the condition name argument of the signal
array.

169

SSETSFM - SET SYSTEM SERVICE FAILURE EXCEPTION MODE

For further information on system service failure exception mode, see
Section 2.1.5.4 (for MACRO programmers) or Section 2.2.2.3 (for
high-level language programmers).

For an explanation and examples of condition handling routines, the
format of the argument lists passed to the condition handler, and a
discussion of the appropriate actions a condition handler may take,
see Chapter 9, "Condition-Handling Services."

170

$SETSWM - SET PROCESS SWAP MODE

$SETSWM

SSETSWM - SET PROCESS SWAP MODE

The Set Process Swap Mode system service allows a process to control
whether it <can be swapped out of the balance set. Once a process is
locked in the balance set, it cannot be swapped out of memory until it
is explicitly unlocked.

Macro Format

SSETSWM [swpflg]

High~Level Language Format
SYS$SETSWM ([swpflgl)

swpflg
Swap indicator. A value of 0 (the default) allows the process to
be swapped; this is the initial setting for swap mode. A value
of 1 inhibits swapping.

Return Status

SS$_WASCLR

Service successfully completed. The process was not previously
locked in the balance set.

SS$_WASSET

Service successfully completed. The process was previously
locked in the balance set.

SS$_NOPRIV

The process does not have the privilege to alter its swap mode.

Privilege Restrictions

The user privilege PSWAPM is required to alter process swap mode.

Notes

l. If a process is locked in the balance set it remains 1locked
until explicitly unlocked or until the process is deleted.

2. Specific pages of a process's virtual address space can be

locked in the balance set with the Lock Pages in Memory
(SLCKPAG) system service.

171

$SNDACC ~ SEND MESSAGE TO ACCOUNTING MANAGER

$SNDACC

$SNDACC - SEND MESSAGE TO ACCOUNTING MANAGER

The Send Message to Accounting Manager system service controls
accounting log activity and allows a process to write an arbitrary
data message into the accounting log file. This file, located on the
system disk in the directory [SYSMGR] and named ACCOUNTNG.DAT, is
sequentially organized and contains variable-length records. Detailed
information about the format of messages sent to and received from the
accounting manager follows the "Notes" section. Table 5 shows the
format of accounting log file records.,

Macro Format

$SNDACC msgbuf , [chan]

High-Level Language Format
SYSSSNDACC (msgbuf , [chan])

msgbuf
Address of a character string descriptor pointing to the message
buffer. The types of message and the buffer formats are
described later in this section.

chan
Number of the channel assigned to the mailbox to receive the
reply. If no channel number is specified or if it is specified
as 0 (the default), no reply is returned.

Return Status

SS$_NORMAL
Service successfully completed.

§S$_ACCVIO

The message buffer or buffer descriptor cannot be read by the
caller.

SS$_BADPARAM

The specified message has a length of 0 or has more than 254
characters.

SS$_DEVNOTMBX
The channel specified is not assigned to a mailbox.
SS$_INSFMEM
Insufficient system dynamic memory is available to complete the

service, and the process has disabled resource wait mode with the
Set Resource Wailt Mode ($SETRWM) system service.

172

$SNDACC - SEND MESSAGE TO ACCOUNTING MANAGER

SS$_IVCHAN

An invalid channel number was specified, that 1is, a channel

number of 0 or a number larger than the number of channels
available.

SS$_NOPRIV

The caller does not have write access to the specified mailbox.

Privilege Restrictions

The user privilege OPER is required to create a new log file or
to enable or disable accounting.

Resources Required/Returned

The Send Message to Accounting Manager system service requires
system dynamic memory.

Notes

1. The general procedure for coding a <call to this service
involves the following steps:

a. Construct the message buffer and place its final 1length
in the first word of the buffer descriptor.

b. Call the $SNDACC system service.

c. Check the return status code from the service to ensure
successful completion.

d. 1Issue a read request to the mailbox specified, 1if any.
When the read completes, check that the operation was
successfully performed.

2. By default, the system writes a record 1into the accounting
log file whenever a job terminates. Termination records are
written for interactive users, batch jobs, non-interactive
processes, login failures, and print jobs. The $SNDACC
system service allows users to write additional data into the
accounting log and allows privileged users to disable or
enable all accounting or accounting for particular types of
jobs.

Table 5 lists the fields in the accounting record and notes
which portions of the accounting record are written for each
type of job., The $SACCDEF macro defines symbolic names for
the message types, fields within the accounting record, and
job type record codes for selective accounting.

173

$SNDACC -~ SEND MESSAGE TO ACCOUNTING MANAGER

Table 5

Format of Accounting Log File Records

Accounting Log File Record Header (Present in all types of log file records)

Offset | Field Name Length Contents
0 ACCSW_MSGTYP word Record type codel
2 ACC$WLMSGSIZ word Length of data message
4 ACCSL FINALSTS |longword |Final exit status
8 ACCSL_PID longword {Process identification
12 ACCSL_JOBID longword [Job identification
16 ACC$Q TERMTIME |quadword |System time at job termination
24 ACC$T_ACCOUNT |8 bytes |Account name (blank-filled)
32 ACCST_USERNAME |12 bytes |User name (blank-filled)
Job Information (Present in termination messages for interactive processes,
non-interactive processes, and batch jobs)
Offset | Field Name Length Contents
44 ACCSL CPUTIM longword |CPU time in 10-millisecond units?2
48 ACCSL:PAGEFLTS longword [Count of page faults during process lifetime
52 ACCSL_PGFLPEAK |longword |Peak size of process paging file
56 ACCSL WSPEAK longword |Peak size of working set
60 ACCSL BIOCNT longword |Count of buffered I/0 operations performed
64 ACC$L:DIOCNT longword |Count of direct I/0 operations performed
68 ACCSL_VOLUMES longword |Count of volumes mounted
72 ACCS$Q LOGIN quadword |[System time at login
80 ACC$L_OWNER longword |[Process identification of process's owner
ACCS$K_TERMLEN constant

Length of non~batch job termination message

Batch Job Accounting Information

(Present only in batch job termination records)

Offset | Field Name Length Contents
84 ACC$T_JOB_NAME |8 bytes Job name (blank-filled)
92 ACC$T_JOB_QUE 16 bytes jQueue name (counted ASCII string)
ACCS$K_JOB_LEN constant |Length of termination record for batch jobs
Printer Job Information (Present only in printer job termination records. The
record contains default header record and CPU time followed by the data listed
below)
Offset | Field Name Length Contents
48 ACCSL_PAGCNT longword |Symbiont page count
52 ACCSL_QIOCNT longword [Symbiont QIO count
56 ACCSL_GETCNT longword |Symbiont GET count
60 ACC$Q_QUETIME quadword |System time that job was queued
68 ACC$T_PRT_NAME [8 bytes |Name of print job
76 ACCST_PRT QUE 12 bytes |[Name of print queue
ACCS$K_PRT_LEN constant |Length of print job accounting record

User Data (Present in user-written messages)

Offset| Field Name Length Contents
44 ACCST_USER_DATA[144 bytes|User data written to accounting file
ACCSK_INS_LEN constant |Length of user-written accounting file log

record

1. The record type code can be one of the following values:

ACCSK BATTRM
ACCSK INTTRM
ACCS$K_PRCTRM
ACCSK LOGTRM
ACCSK PRTJOB
ACCSK_INSMSG

2. CPU time accounting is not performed for

Batch job termination

Interactive job termination

Subprocess or detached process termination
Login failure termination

Print job accounting message

User-inserted message

a print Jjob since there 1is no

process creation or termination involved with the job.

174

$SNDACC - SEND MESSAGE TO ACCOUNTING MANAGER

Format of Messages Sent to the Accounting Manager

A message buffer for a message to the accounting manager begins with a
word defining the message type. Some message types require that data
follow the message type code in the buffer, The message types and
data, if any, required by each are listed below.

l.

ACC$K_INSMESG

Insert an arbitrary message in the accounting log file. The
message code is followed by any arbitrary data. When the
message is inserted in the accounting log file, the default
header precedes the user-specified data.

ACCSK_NEWFILE

Requests that the current log file be closed and a new file
created. Operator privilege is required to create a new log
file. No data is required for the message.

ACCSK_ENABACC

Enables accounting for all types of Jjobs. Operator privilege
is required to enable accounting. No data is required for
the message.

ACCSK_DISAACC

Disables accounting for all types of job. Operator privilege
is required to disable accounting. No data is required for
the message.

ACC$K_ENABSEL

Enables accounting for certain types of Jjob,. Operator
privilege 1is required to selectively enable accounting. The
message type code must be followed by one or more bytes
indicating the type of 3job for which accounting is to be
enabled. (The job type codes below are also used to indicate
the record type in the first word of each accounting log file
record. See Table 5.)

Code Job Type

ACCSK_BATTRM Batch job

ACC$K_INSMSG Arbitrary (user-inserted) messages

ACCSK_INTTRM Interactive job

ACCSK LOGTRM Login failure termination

ACCSK:PRCTRM Non-interactive process (subprocess
or detached process)

ACC$K_PRTJOB Print job

The list of job type codes must be terminated with a byte
containing 0.

ACCSK_DISASEL

Disables accounting for certain types of job. Operator
privilege is required to selectively disable accounting. The
message type code is followed by one or more bytes indicating
the types of job for which accounting is to be disabled. The
codes are listed above, under ACCSK_ENABSEL.

175

$SNDACC - SEND MESSAGE TO ACCOUNTING MANAGER

Format of Response from the Accounting Manager

If a mailbox is specified, the accounting manager returns a message in
the format:

Bits Contents
0-15 MSGS$ ACCRSP indicates that the message is a response

from the accounting manager. (This symbolic name is
defined in the $MSGDEF macro.)

16-31 0
32-63 Status code indicating the success of the operation.
If the mailbox cannot handle the message (because there is

insufficient buffer space or because a message is too long), or if the
mailbox no longer exists when the reply is sent, the response is lost.

Status Codes Returned in the Mailbox:

SS$_NORMAL
Request successfully performed.

JBC$_ACMINVOP
An invalid operation was requested.

JBCS$S_NOPRIV
The process does not have the privilege to perform the requested
operation.

The symbols for these status codes are defined by the $JBCMSGDEF macro
and are contained in the macro library SYSSLIBRARY:LIB.MLB,

176

$SNDERR - SEND MESSAGE TO ERROR LOGGER

$SNDERR

$SNDERR - SEND MESSAGE TO ERROR LOGGER

The Send Message To Error Logger system service writes an arbitrary
message to the system error log file. The user-specified message is
preceded by the date and time.

Macro Format

$SNDERR msgbuf

High-Level Language Format
SYSSSNDERR (msgbuf)
msgbuf
Address of character string descriptor pointing to the message to
be inserted in the system error log file,
Return Status
SS$_NORMAL
Service successfully completed.
S§S$_ACCVIO

The message buffer or buffer descriptor cannot be read by the
caller.

SS$_INSFMEM
Insufficient system dynamic memory is available to complete the
service, and the process has disabled resource wait mode with the
Set Resource Wait Mode ($SETRWM) system service,

SS$_NOPRIV
The process does not have the BUGCHK privilege.

Privilege Restrictions

The user privilege BUGCHK is required to send a message to the
error log file.

Resources Required/Returned

The Send Message To Error Logger system service requires system
dynamic memory.

177

$SNDOPR - SEND MESSAGE TO OPERATOR

$SNDOPR

SSNDOPR -~ SEND MESSAGE TO OPERATOR

The Send Message To Operator system service allows a process to send a
message to one or more terminals designated as operators' terminals
and optionally receive a reply. The service also allows a process to
enable a terminal as an operator's terminal or to initialize the
operator communication log file (that is, close the current version of
the file and open a new version).

Detailed information about $SNDOPR message types and message formats
follows the "Notes" section.

Macro Format

SSNDOPR msgbuf , [chan]

High-Level Language Format
SYS$SNDOPR (msghbuf , [chan])

msgbuf
Address of character string descriptor pointing to the message
buffer. The types of message and the buffer formats are
described later in this section.

chan
Number of the channel assigned to the mailbox to which the reply
is to be sent, if any. A channel number of 0 (the default)
implies no mailbox unit.

Return Status

SS$_NORMAL
Service successfully completed.

SS$_ACCVIO

The message buffer or buffer descriptor cannot be read by the
caller.

5S5$_BADPARAM

The specified message has a length of 0 or has more than 128
bytes.

SS$_DEVNOTMBX
The channel specified is not assigned to a mailbox.

SS$_DEVOFFLINE

There is no operator designated to receive messages.

178

$SNDOPR - SEND MESSAGE TO OPERATOR

SS$_INSFMEM

Insufficient system dynamic memory is available to complete the
service and the process has disabled resource wait mode with the
Set Resource Wait Mode ($SETRWM) system service.

SS$_IVCHAN
An invalid channel number was specified, that 1is, a channel
number of 0 or a number larger than the number of channels
available.

SS$_NOPRIV
The process does not have the privilege to send a message to the
operator, the process does not have read/write access to the
specified mailbox, or the channel was assigned from a more
privileged access mode.

Privilege Restrictions
The user privilege OPER is required to issue the Send Message To
Operator system service to enable a terminal as an operator's
terminal, to reply to or cancel a user's request, or to
initialize the operator communication log file.

Resources Required/Returned
The Send Message To Operator system service requires system
dynamic memory.

Notes

1. The general procedure for using this service is as follows:

a. Construct the message buffer and place its final length
in the first word of the bhuffer descriptor.

b. Issue the $SNDOPR system service.

c. Check the return status code from the service to ensure
successful completion,

d. 1Issue a read request to the mailbox specified, 1if any.

When the read completes, check that the operation was
successfully performed.

179

$SNDOPR - SEND MESSAGE TO OPERATOR

2. This service is used by the system to implement the REQUEST
and REPLY commands, which provide communications between
users and operators. An operator establishes a terminal as
an operator's console by issuing the REPLY/ENABLE command,
specifying the types of message that will be handled. Users
can then send messages to the operator with the REQUEST
command, optionally requesting replies.

Messages are displayed on a specified operator's terminal in
the format:

User="userrname” ACNT="aocount®
LY T e kXD
tant

Oecom ~- Limg -
O com - XKX
wcom -

If a reply is requested, the operator request is kept active
until the operator responds.

The VAX/VMS Operator's Guide describes the REQUEST and REPLY
commands in greater detail.

$SNDOPR Message Types and Message Formats

The S$OPCDEF macro defines symbolic names for operator message types,
offsets within messages, and return status codes.

The $SNDOPR system service handles these message types:
Code Type of Request
OPC$_RQ_RQST Request operator functions
OPC$_RQ CANCEL Cancel a user request
OPCS$_RQ REPLY Reply to user request
OPCS_RQ_TERME Enable terminal for operator's use
OPCS_RQ LOGI Initialize log file

OPC$_RQ_STATUS Report operator's status to the terminal

180

$SNDOPR - SEND MESSAGE TO OPERATOR

Each message type has a different format. The maximum length of any
message is 128 bytes, including message text. The message formats are
explained below.

OPC$_RQ_RQST Request CodeJ

Constructs a message to be displayed at an operator's terminal
(REQUEST command). The message format is:

Offset Length Contents

OPCSB_MS_TYPE byte OPCS_RQ RQST identifies the type of
message

OPCS$B_MS_TARGET 3 bytes Mask indicating which operators will

receive the message. The symbolic names
to create the mask are:

OPCSM_NM_CARDS Card device operator

OPCSM NM CENTRL Central operator

OPC$M_NM DEVICE Device status information

OPCSM NM DISKS Disk operator

OPC$M NM NTWORK Network operator

OPCSM_NM_TAPES Tape operator

OPCSM NM PRINT Printer operator

OPC$SM NM OPER1 System manager-defined
- operator functions

OPC$M_NM_OPER12

OPCSL_MS_RQSTID Longword User-specified message identification to
be used for replying

0PC$L_MS_TEXT 0-120 bytes Up to 120 bytes of message text

OPC$_RQ_CANCEL Request Code |

Notifies an operator that a request is to be canceled.

The message format is the same as for the message type 0PC$_RQ_ROST
except that:

e The message type field must contain OPC$_RQ_CANCEL

e The message has no message text.

181

$SNDOPR - S

END MESSAGE TO OPERATOR

OPC$_RQ_REPLY Request Code

Constructs a reply to a user
format is:

Offset Length
OPC$B_MS_TYPE byte
OPCSW_MS_STATUS word
OPCS$L_MS_RPLYID longword
OPCSW_MS_OUNIT word

OPC$T_MS_ONAME

OPC$L_MS_OTEXT

request (REPLY command). The message
Contents
OPC$_RQ_REPLY identifies the type of

message
Return status:

OPCS RQSTCMPLTE Request completed
OPC$~RQSTABORT Request denied
OPC$ ROSTPEND Request pending
OPCS$_RQSTCAN Request canceled

OPCS_RQ_TERME Request Code

Enables a terminal for oper
message format is:

Offset Length
OPCS$B_MS_TYPE byte
OPC$SB_MS_ENAB 3 bytes
OPCSL_MS_MASK longword
OPC$W_MS_OUNIT word

OPC$T_MS_ONAME

|oPCS_RO_LOGI Request Code

Initializes the log file of
This file 1is explained in t
format is:

Identification of message to which reply
is directed

Unit number of terminal

Device name (counted ASCII string)

Reply message text, if any

ator use (REPLY/ENABLE command). The
Contents

OPC$S_RQ_TERME identifies the type of
message

Masks defining the type of messages for
which the terminal is enabled (The same
message types must be specified in both
masks.)

Unit number of terminal

Device name (counted ASCII string)

operator messages (REPLY/LOG
he VAX/VMS Operator's Guide.

command) .
The message

182

$SNDOPR - SEND MESSAGE TO OPERATOR

Offset Length Contents
OPCSB_MS_TYPE byte OPC$_RQ_LOGI identifies the type of
message
- 7 bytes Ignored
OPCSW_MS_OUNIT word Unit number of terminal
OPC$T_MS_ONAME -—- Device name (counted ASCII string)

[0PC$_RQ_STATUS Request Code|

Reports the operator's status to the terminal. The message format is:

Offset Length Contents

OPC$B_MS_TYPE byte OPCS_RQ STATUS identifies the type of message
OPCSW_MS_OUNIT word Unit number of terminal

OPCST_MS_ONAME - Device name (counted ASCII string)

Format of Response from Operator Communication Manager

When the operator replies to a message, the reply is placed 1in the
specified mailbox in the format:

Offset Length Contents

OPC$SB_MS_TYPE word MSGS_OPREPLY indicates that the message
is a response to an operator's request.
This symbolic name 1is defined 1in the
$MSGDEF macro.

OPCSW_MS_ STATUS word Return status.

OPCSL_MS RPLYID longword Identification of message for which reply
is made (specified 1in wuser request
message)

OPCSL_MS_TEXT 0-128 bytes Up to 128 bytes of message text taken
from reply

If the mailbox specified to receive the reply cannot handle the reply

message (either because of insufficient buffer space or because the
messade is too big), the message is lost.

183

$SNDOPR - SEND MESSAGE TO OPERATOR

Status Codes Returned in Mailbox:
OPC$_NOPERATOR

Success, There was no operator enabled to receive the message.
OPCS_RQSTCMPLTE

Success. The operator completed the request.
OPC$_RQSTPEND

Success. The operator will perform the request when possible.
OPCS$_RQSTABORT

The operator could not satisfy the request.
OPCS$_RQSTCAN

The caller canceled the request.

184

$SNDSMB ~ SEND MESSAGE TO SYMBIONT MANAGER

$SNDSMB

$SNDSMB ~ SEND MESSAGE TO SYMBIONT MANAGER
The Send Message To Symbiont Manager system service 1is used by the
operating system to queue user's print files to a system printer or to
queue command procedure files for detached job execution,
Symbiont manager requests do the following:

e Create and delete queues

® Add or delete files from a queue

® Change the attributes of files in a queue

e Start and restart dequeuing
Detailed information about the format of messages to and responses
from the symbiont manager follow the "Notes" section. Table 6 shows
request types for symbiont manager messages. Table 7 shows the
options for symbiont manager messages.

Macro Format

$SNDSMB msghuf , [chan]

High-Level Language Format
SYS$SNDSMB (msgbuf , [chan])

msgbuf
Address of a character string descriptor pointing to the message
buffer. The buffer formats and the types of messages are

described later in this section

chan
Number of the channel assigned to the mailbox to receive the

reply. If no channel number is specified, or if it is specified
as 0 (the default), it indicates that no reply is desired.

Return Status
SS$_NORMAL

Service successfully completed.
SS$_ACCVIO

The message buffer or buffer descriptor cannot be read hy the
caller.

SS$_BADPARAM

The specified message has a length of 0 or has more than 200
characters.

185

$SNDSMB - SEND MESSAGE TO SYMBIONT MANAGER

SS$_DEVNOTMBX
The specified channel is not assigned to a mailbox.

SS$_INSFMEM
Insufficient system dynamic memory is available to complete the
service, and the process has disabled resource wait mode with the
Set Resource Wait Mode ($SSETRWM) system service,

SS$_IVCHAN
An invalid channel number was specified; that 1is, a channel
number of 0 or a number larger than the number of channels
available.

SS$_NOPRIV

The caller does not have write access to the specified mailbox.

Resources Required/Returned
The Send Message To Symbiont Manager system service requires
system dynamic memory.

Privilege Restrictions

There are several levels of privilege involved in symbiont
control:

e The OPER privilege allows you to perform all the functions of
this service. You need the OPER privilege for any function
that affects a queue itself (for example, 1initializing or
deleting a queue).

e The WORLD privilege allows you to perform functions that
affect any entry in a queue, regardless of which process owns
the job or file associated with the entry.

e The GROUP privilege allows you to perform functions that
affect any entry in a queue, as long as the job or file
associated with the entry is owned by a process in your group.

Notes

1. The general procedure for using this service is as follows:

a. Construct the message buffer and place its final 1length
in the first word of the buffer descriptor.

b, Issue the $SSNDSMB system service,

c. Check the return status code from the service to ensure
successful completion.

d. 1Issue a read request to the mailbox specified, if any.

When the read completes, check that the operation was
successfully performed.

186

$SNDSMB - SEND MESSAGE TO SYMBIONT MANAGER

2. A working set default size and a working set gquota (maximum
size) are included 1in each user record in the system user
authorization file (UAF), and can be specified for individual
jobs and/or for all jobs in a given queue. The following
decision table shows the action taken for different
combinations of specifications involving working set size and
working set quota values.

Value specified Value specified Action taken
for job? for queue?
No No Use UAF value
No Yes Use value for queue
Yes Yes Use lower of the two
Yes No Compare specified value
with UAF value; use
lower

3. A CPU time limit for the process is included in each user
record in the system user authorization file (UAF). You can
also specify any or all of the following: a CPU time 1limit
for individual jobs, a default CPU time limit for all jobs in
a given queue, and a maximum CPU time limit for all jobs in a
given queue. The following decision table shows the action
taken for each of these possible combinations.

CPU time limit Default CPU time Maximum CPU time Action taken
specified for limit specified specified for queue?
job? for queue?
No No No Use UAF value
Yes No No Use smaller of Jjob's limit

and UAF value

Yes Yes No Use smaller of job's limit
and UAF value

Yes No Yes Use smaller of job's limit
and maximum

Yes Yes Yes Use smaller of job's limit
and maximum

No Yes Yes Use smaller of queue's
default and maximum

No No Yes Use maximum

No Yes No Use smaller of UAF value
and queue's default

187

$SNDSMB - SEND MESSAGE TO SYMBIONT MANAGER

Format of Messages Sent to Symbiont Manager

Messages are variable-length, and their formats depend on the request
type. Each request type can require from 0 through 5 additional data
fields, and can be followed by options. Some options require
additional data.

The general message format is:

request [queuename] [devname] [fileid] [dirid]
[filename] [jobid] [jobname] [optionf{opdatal]

request

l6~bit field indicating the request type. The $SMRDEF macro
defines symbolic codes for each request in the format:

SMR$C_code

Valid request codes, and the required and optional fields for
each, are listed in Table 6.

queuename

l6-byte queue name. The length of the name must be in the first
byte. A gqueue name can be a physical device name (for example,
LPAO:), a logical name (for example, SYSSPRINT), or a designated
name string, such as BATCH or AFTERS.

Some request types require two Qqueue names, for example
SMR$K_MERGE.

devname

l6~-byte field containing the name of the device on which the file
resides. The 1length of the device name must be in the first
byte. The device name is returned by RMS as a counted ASCII
string in the NAMST DVI field of the auxiliary name block (NAM)
when the file is opened.

fileid
6-byte file identification. RMS returns the file identification
in the auxiliary name block (NAM) beginning at the offset
NAMSW_FID when the file is opened.

dirid

6-byte directory identification returned by RMS in the name block
(NAM) at the offset NAM$W DID.

filename

20-byte field containing the name of a file to be queued. The
first byte in the field must contain the length.

jobid
16-bit job header identifying the Jjob. This information 1is

returned in the message queued to the mailbox on completion of
the operation.

188

$SNDSMB - SEND MESSAGE TO SYMBIONT MANAGER

" jobname
8-byte blank-filled ASCII name string.

option
Byte indicating an optional parameter for the request. The
ii?ﬁgif macro defines symbolic names for the options in the

SMOSC_option

Valid options for each request type are listed in Table 6, The
options and any data required by each are listed in Table 7.

opdata

Any data required by the specified option.

Syntax Notes

1, Fields within the message buffer must be placed in
consecutive positions in the buffer, with no intervening
blanks, .

2. The message length passed to the service indicates the total
length of the buffer. If a byte of binary 0's follows an
option or its required data, the message scan is terminated.
Therefore, fixed-length message buffers can be used, with a 0
indicating termination of the option list.

The following example shows an input message buffer for the $SNDSMB
system service:

ADDLTETS

» WORD SMRGK. AL LL
« BLIKR 1é

o BLKW 3

+ BLIKE 20

» RLIKE 10

A FTLE
L CCOUNTED STRING

COFTIONS
GE

ROOM FOR 1

TETOR FOR
LENGTH OF BUF
PADDRESS OF BUFFER

o LONG ANDESC~ADnL IS8T
« LONG ALNLTST

*

L4

¢

SHNDGME.LS MBGBUF=ANDESC $A0D FILE TO QUEUE

189

$SNDSMB - SEND MESSAGE TO SYMBIONT MANAGER

Table 6
Request Types for Symbiont Manager Messages

Request Function Required Data valid Options
SMRSK_ABORT Stops printing the current queuename SMOSK._REQUEUE
file and skips to the
next file
SMRSK_ADDFIL Adds a file to a job devname SMOSK_COPIES
fileid SMO$K_BRSTPAG
dirnamel SMOS$K_DELETE
filename 2 SMOSK_DOUBLE

SMOSK_FLAGPAG
SMOSK_NOBRSTPAG
SMOSK_NOFEED
SMOSK_NOFLAGPAG
SMO$K_PAGCNT
SMOSK_PAGHDR

SMRSK_ALTER Changes attributes of a queuename SMO$K_CRPULIM
previously queued job and jobid SMOSK_DQCHAR
requeues the job SMOSK_FORMTYP

SMOSK_HOLD

SMOSK_JOBCOPY
SMO$K_JOBNAME
SMO$K_JOBPRI
SMOSK_LOWER
SMO$K_NOCPULM
SMOSK_NOLOWER
SMO$K_NOWSDFT
SMO$K_NOWSQUO
SMOSK_RLSTIM
SMOSK_WSDEFLT
SMOSK_WSQUOTA

SMR$K_ASSIGN Directs a queue to a queuename None
specific device [devname]
SMR$K_CLSJOB Closes the job None SMOSK_FORMTYP
SMOSK_HOLD

SMOS$K_JOBPRI
SMOS$K_RLSTIM

SMR$SK_CREJOB Creates a job queuename SMO$ CPULIM
SMOS$K_DQCHAR
SMO$K_FORMTYP
SMOSK_HOLD
SMOSK_JOBCOPY
SMO$K_JOBPRI
SMOSK_LOWER
SMOSK_NOCPULM
SMOSK_NOLOWER
SMOSK_NOWSDFT
SMOSK_NOWSQUO
SMOSK_PARAMS
SMOSK_RLSTIM
SMOSK_WSDEFLT
SMOSK_WSQUOTA

SMR$K_DELETE Deletes a device queue queuename None
SMRSK_ENTER Enters a file in a queuename SMOSK_BRSTPAG
: queue for a device devname SMOSK_COPIES
fileid SMOSK_DELETE
dirnamel SMO$K_DOUBLE
filename? SMOSK_FLAGPAG
SMO$K__FORMTYP
SMOSK_HOLD

SMO$K_JOBCOPY
SMO$X_LOWER
SMOSK_NOBRSTPAG
SMOSK_NOFEED
SMOSK_NOFLAGPAG
SMOSK_NOLOWER
SMOSK_PAGCNT
SMOSK_PAGHDR
SMOSK_JOBPRI
SMOSK_RLSTIM

1. The dirname field is required only if file is to be deleted after processing.

2. The filename field is optional; it can be used for informational purposes.

190

$SNDSMB - SEND MESSAGE TO SYMBIONT MANAGER

Table 6 (Cont.)
Request Types for Symbiont Manager Messages

Request

Function

Required Data

Valid Options

SMR$K_INITIAL

SMR$K_JUSTIFY

SMR$K_MERGE

SMR$K_PAUSE
SMR$K_REDIRECT
SMR$K_RELEASE

SMRS$K_RMVJOB

SMR$K_START

SMR$K_STOP

SMR$K_SYNCJOB

Initializes or reinitializes
a queue

Issues hardware form
feed

Deletes jobs from second
queue and places them in
first queue

Temporarily suspends current
operation

Redirects second queue to
first queue

Releases a held job for
printing

Removes a job from
a queue

Enables printing on a device,
resumes printing on a paused
device, or restarts printing
on a stopped device

Stops printing on a device
(for a batch job, equivalent
to PAUSE)

Waits for a batch job to
complete

queuename

queuename

queuenamel
queuename?2

queuename

queuenamel
[queuename2]

queuename
jobidl
jobid

queuename

queuename

queuename
[jobid]2
[jobnamel

SMOSK_CURDQCHAR
SMOSK_CURFORM
SMOSK_DCPULM
SMOSK_DEFBRST
SMOSK_DEFFLAG
SMO$K_DETJOB
SMOSK_DISWAP
SMOSK_GENDEV
SMOSK_GENPRT
SMOSK_INIPRI
SMOSK_JOBLIM
SMO$K_MCPULM
SMOS$K_NODCPULM
SMOSK_NODEFBRST
SMOSK_NODEFFLAG
SMOSK_NOGENDEV
SMOSK_NOGENPRT
SMOS$K_NOMCPULM
SMOSK_NOTRMDEV
SMOSK_NOWSDFLT
SMOSK_NOWSQUTA
SMOSK_SMBNAME
SMOSK_TRMDEV
SMOSK_WSDFLT
SMOSK_WSQUTA

None

None

None
None
None

None

SMOSK_CURDQCHAR
SMOS$K_CURFORM
SMOSK_DCPULM
SMOSK_DEFBRST
SMOSK_DEFFLAG
SMOSK_DETJOB
SMO$K_GENDEV
SMOSK_GENPRT
SMOSK_INIPRI
SMOSK_JOBLIM
SMO$K_MCPULM
SMOSK_NEXTJOB
SMOSK_NODCPULM
SMO$K_NODEFBRST
SMOSK_NODEFFLAG
SMOSK_NOGENDEV
SMOSK_NOGENPRT
SMOSK_NOMCPULM
SMOSK_NOTRMDEV
SMOSK_NOWSDFLT
SMOSK_NOWSQUTA
SMOSK_PAGNUM
SMOSK_SMBNAME
SMOSK_TOPOFILE
SMOSK_TRMDEV
SMOS$K_WSDFLT
SMOSK_WSQUTA

None

l. A jobid is optional;

is released.

2, Either the jobid or the jobname must be specified.

191

if specified as 0 or not specified, the first job in queue

$SNDSMB -

SEND MESSAGE TO SYMBIONT MANAGER

Table 7
Options for Symbiont Manager Messages
Option Function Required Data

SMOSK_BRSTPAG

SMOSK_COPIES

SMO$K_CPULIM

SMO$K_CURDQCHAR

SMO$K_CURFORM

SMO$K_DCPULM

SMOSK_DEFBRST
SMOSK_DEFFLAG

SMO$K_DELETE

SMO$K_DETJOB
SMO$K_DISWAP

SMOS$K_DOUBLE

SMO$K_DQCHAR

SMO$K_FLAGPAG

SMO$K_FORMTYPE

SMO$K_GENDEV

SMO$K_GENPRT

SMO$K_HOLD
SMOSK_INIPRI
SMOSK_JOBCOPY
SMO$SK_JOBLIM
SMO$K_JOBNAME
SMO$K_JOBPRI

SMO$K_LOWER

SMOSK_MCPULM

SMOSK_NEXTJOB

Specifies that a burst page
should be printed

Specifies the number of
copies of the file to
print

Specifies CPU time limit
for batch job

Specifies current queue
characteristics

Defines form type currently
on printer

Specifies default CPU time
limit for jobs originating
from a specific batch job
queue (must be less than or
equal to SMO$K_MCPULM)

Specifies that queue prints
burst page by default

Specifies that queue prints
flag page by default

Deletes file after printing

Defines queue as a detached
job (batch) gqueue

Disables swapping of all
batch jobs in queue

Double-spaces printer output

Specifies characteristics
the device queue must
have before a job in

it can be dequeued

Specifies that a flag page
should be printed

Specifies the form type

Defines the queue as a
generic device queue

Defines the queue as a
generic printer file
queue

Holds job until specifically
released

Specifies initial priority
of batch job

Specifies a repeat count
for the entire job

Specifies maximum number
of jobs in batch queue

Specifies the job name

Specifies priority for
queuing of a job

Specifies that printer
must be equipped with
upper-case and lowercase
characters

Specifies maximum CPU
time for jobs originating
from a specific batch queue

Terminates current job and
start printing with next
job

None

Number of copies (1 byte)

Number of 10-ms units
(unsigned longword)

16 bytes (128 bits,
each corresponding to a
characteristic)

Type of form (1 byte)

Number of 10-ms units
(unsigned longword)

None

None

None

None

None

None
16 bytes (128 bits,

each corresponding to a
characteristic)

None

Type of form (1 byte)

None

None

None

Priority (1 byte)
range: 0 through 15
Repeat count (1 byte)
Number of jobs

(1 byte)

Counted ASCII string
(1 to 8 bytes)

Priority (1l byte)
range: 0 through 31

None

Number of 10-ms units
(unsigned longword)

None

192

$SNDSMB - SEND MESSAGE TO SYMBIONT MANAGER

Table 7

(Cont.)

Options for Symbiont Manager Messages

Option

SMOSK_NOBRSTPAG
SMOSK_NOCPULM

SMO$K_NODCPULM

SMOS$K_NODEFBRST

SMO$K_NODEFFLAG

SMOSK_NOFEED
SMO$K_NOFLAGPAG
SMOSK_NOGENDEV
SMO$K_NOGENPRT
SMOSK_NOLOWER

SMOSK_NOMCPULM

SMOSK_NOTRMDEV

SMOSK_NOWSDFLT

SMO$K_NOWSDFT
SMOSK_NOWSQUO

SMOSK_NOWSQUTA

SMOSK_PAGCNT
SMO$K_PAGHDR

SMOSK_PARAMS

SMOSK_SMBNAME

SMOSK_REQUEUE

SMOSK_RLSTIM

SMOS$K_SPCCNT

SMOSK_TOPOFILE
SMOSK_TRMDEV

SMOSK_WSDEFLT

SMO$K_WSDFLT

SMO$K_WSQUOTA

SMOSK_WSQUTA

Function

Required Data

Specifies that no burst
page should be printed

No CPU time limit is
specified for batch job

No default CPU time limit
is specified for jobs ori-
ginating from this queue

Specifies that printer
does not.generate burst
page by default

Specifies that printer does
not generate flag page
by default

Cancels automatic
form feed for output

Specifies that no flag page
should be printed

Disallows generic spooling
to the device

Disallows generic printing
on the specified device

Specifies that lowercase
printer is not reUired

No maximum CPU time
limit is specified for
jobs originating from
this queue.

Specifies that device is
not a terminal

No working set default size
is specified for jobs
originating from this batch
queue

No working set default size
is specified for this job

No working set quota is
specified for this job

No working set quota is
specified for jobs origina-
ting from this batch queue

Specifies the number of
pages to print

Prints file specification on
the top of each output page

Specifies parameters for a
batch job

Specifies name of print
symbiont for jobs
originating from this queue

Places aborted line
printer job back into
the queue

Specifies time to release
a held job

Restarts current job
backspacing or forward
spacing pages

Restarts current job at top
of file

Specifies that device is a
terminal

Specifies default working
set size for batch job
must be less than or
equal to SMOSK_WSQUOTA)

Specifies default working
set size for jobs origin-
ating from this queue (must
be less than or equal to
SMOS_WSQUTA)

Specifies working set quota
for batch job

Specifies working set quota
for jobs originating from
this queue

None

None

None

None

None

None

None

None

None

None

None

None

None

None

None

None

Number of pages (1 word)

None

One or more counted ASCII
strings terminated by

0 (maximum length of

all strings is A3 bytes)
Image file specifica-
tion (counted ASCII
string, max. 15 bytes
plus count byte)

None

Binary absolute time value
(quadword)

Signed 16-bit integer
specifying
plus or minus page count

None

None

Number of memory pages
(1 word)

Number of memory pages
(1 word)

Number of memory pages
(1 word)

Number of memory pages
(1 word)

193

$SNDSMB - SEND MESSAGE TO SYMBIONT MANAGER

Format of Response from Symbiont Manager

If a mailbox is specified, the symbiont manager returns to it the
following information:

Bits Contents
0-15 MSG$_SMBRSP indicates that the message is from the
symbiont manager. (This name is defined in the $MSGDEF
macro.)
16-31 Jobid.
32-63 Status code indicating the success of the operation,
If the mailbox cannot handle the message (because there is

insufficient buffer space or because a message is too long), or if the
mailbox no longer exists when the reply is sent, the response is lost.
Status Codes Returned in Mailbox:
JBCS_NORMAL

Service successfully completed.
JBCS_ILLDEVNAM

The device name specified has more than 15 characters.
JBCS_ILLDEVTYP

The symbiont manager cannot create a queue for the device type
specified.

JBCS_ILLFILNAM
The filename specified has more than 19 characters.
JBC$_ILLQUENAM
The specified queue name has more than 15 characters; or the
type of queue associated with the name 1is invalid for this
request.
JBC$_INVREQ .
An invalid request type was specified.
JBC$_NOOPENJOB
There is no outstanding open print job for the caller.

JBC$_NOPRIV

The process does not have the privilege to perform the requested
operation.

JBCS_NOQUEHDR

The symbiont manager has no more space to allocate a queue
header.

194

$SNDSMB - SEND MESSAGE TO SYMBIONT MANAGER

JBC$_NOQUESPACE

The specified device queue is full,
JBCS$_NOSUCHJOB

The specified record was not a print job.
JBC$_NOSUCHQUE

There is no queue for the specified device.
JBC$_PARLENEXD

The parameter string exceeds the maximum permitted length.
JBC$_QUENOSTOP

The specified queue is still active,
JBCS_SMINVOPR

The request type specified is illegal; or an attempt was made to
start a queue that was already started.

JBCS_SMINVOPT
A specified option is invalid for the request type.
JBC$_SMINVREQ
An invalid request type was specified.
JBC$~SMZEROJOB
A job was released that had no files in it,
JBC$_SYMBDSAB
The symbiont manager is disabled.
JBC$~TRMMBXUSE
For a SMRSK_SYNCJOB request, another job is already waiting for
the specified job to complete. (Only one job can be waiting for

a specified job to complete.)

These status codes are defined in the $JBCMSGDEF macro.

195

$SUSPND - SUSPEND PROCESS

$SUSPND

$SUSPND -~ SUSPEND PROCESS

The Suspend Process system service allows a process to suspend itself
or another process. A suspended process canhnot receive ASTs or
otherwise be executed until another process resumes or deletes it.

Macro Format

$SUSPND [pidadr] ,[prcnam]

High-Level Language Format
SYSS$SUSPND ([pidadr] , [prcnam])
pidadr

Address of.a longword containing the process identification of
the process to be suspended.

prcnam

Address of a character string descriptor pointing to the 1- to
15-character process name string. The process name is implicitly
qualified by the group number of the process issuing the suspend.

If neither a process identification nor a process name is specified,
the caller 1is suspended. For details on how the service interprets
the PIDADR and PRCNAM arguments, see Table 7-1 in Chapter 7, "Process
Control Services."
Return Status
SS$_NORMAL
Service successfully completed.
SS$_ACCVIO
The process name string or string descriptor cannot be read by
the caller, or process identification cannot be written by the
caller.

SS$_INSFMEM

Insufficient system dynamic memory is available to complete the
service and the process has disabled resource wait mode with the
Set Resource Wait Mode (SSETRWM) system service.

SS$_IVLOGNAM

The specified process name has a length of 0 or has more than 15
characters.

SS$_NONEXPR

Warning. The specified process does not exist, or an invalid
process identification was specified.

196

$SUSPND - SUSPEND PROCESS

SS$_NOPRIV

The target process was not created by the caller and the
requesting process does not have group or world process control
privilege.

Privilege Restrictions
User privileges are required to suspend:

e Other processes in the same group (GROUP privilege)

® Any other process in the system (WORLD privilege)

Resources Required/Returned

The Suspend Process system service requires system dynamic
memory.

Notes

1. The suspend process system service completes successfully if
the target process is already suspended.

2, Unless it has pages locked in the balance set, a suspended
process can be removed from the balance set to allow other
processes to execute.

3. The Resume Process (SRESUME) system service allows a
suspended process to continue. If one or more resume
requests are issued for a process that is not suspended, a
subsequent suspend request completes immediately; that is,
the process is not suspended. No count is maintained of
outstanding resume requests.

For more information on process suspension, see Section 7.5, "Process
Hibernation and Suspension."

197

STRNLOG - TRANSLATE LOGICAL NAME

$TRNLOG

$TRNLOG - TRANSLATE LOGICAL NAME

The Translate Logical Name system service searches the logical name
tables for a specified logical name and returns an equivalence name
string. The process, group, and system logical name tables are
searched in that order.

The first string match returns the equivalence string into a
user-specified buffer; the search is not recursive.

Macro Format

STRNLOG 1lognam ,[rsllen] ,rslbuf ,[table] ,[acmode] ,[dsbmsk]

High-Level Language Format
SYSSTRNLOG (lognam , [rsllen] ,rslbuf ,[table}] ,[acmode] ,[dsbmsk])

lognam

Address of a character string descriptor pointing to the 1logical
name string.

rsllen

Address of a word to receive the length of the translated
equivalence name string.

rslbuf

Address of a character string descriptor pointing to the buffer
which is to receive the resultant equivalence name string.

table

Address of a bhyte to receive the number of the logical name table
in which the match was found. A return value of 0 indicates that
the logical name was found in the system logical name table; 1
indicates the group table, and 2 indicates the process table.

acmode

Address of a byte to receive the access mode from which the
logical name table entry was made. Data received in this byte is
valid only if the logical name match was found in table 2, the
process logical name table.

dsbmsk

Mask in which bits set to 1 disable the search of particular
logical name tables. If bit 0 is set, the system logical name
table is not searched; if bit 1 is set, the group 1logical name
table is not searched; 1if bit 2 is set, the process logical name
table is not searched.

If no mask is specified or is specified as 0 (the default), all
three logical name tables are searched.

198

STRNLOG - TRANSLATE LOGICAL NAME

Return Status
SSS_NORMAL

Service successfully completed. The equivalence name string was
placed in the output buffer.

S§S$_NOTRAN

Service successfully completed. The input 1logical name string
was placed in the output buffer because no equivalence name was
found.

SS$_ACCVIO

The logical name string or string descriptor cannot be read by
the caller; or the output length, output buffer, or table or
access mode field cannot be written by the caller.

S§S$_IVLOGNAM

The specified logical name string has a length of 0 or has more
than 63 characters.

SS$_RESULTOVF
The buffer to receive the resultant string has a length of =zero,
or it is smaller than the string.

Notes
If the first character of a specified 1logical name 1is an
underline character (_), no translation is performed. However,
the underscore character is removed from the string and the
modified string is returned in the output buffer.

For an example of the $TRNLOG system service, see Figure 2-1 at the

end of Chapter 2. For additional information on this service, see
Chapter 5, "Logical Name Services."

199

SULKPAG - UNLOCK PAGES FROM MEMORY

SULKPAG

SULKPAG - UNLOCK PAGES FROM MEMORY

The Unlock Pages from Memory system service releases the page lock

on

a page or range of pages previously locked in memory by the Lock Pages

in Memory ($SLCKPAG) service.
Macro Format

SULKPAG inadr ,[retadr] ,[acmode]
High-Level Language Format

SYSSULKPAG (inadr , [retadr] ,[acmode])

inadr

Address of a 2-longword array containing the starting and
of the pages to be unlocked.
and ending virtual addresses are
virtual page number portion of the .virtual
the low-order 9 bits are ignored.

virtual addresses

unlocked. Only the

addresses is used;

retadr

Address of a 2-longword array to receive the starting and

ending
If the starting
the same, a single page is

virtual addresses of the pages actually unlocked.

acmode

Access mode of the locked pages.
maximized with the access

mode
access mode must be equal to or more privileged than

ending

The specified access mode Iis
of the caller. The resultant
the access

mode of the owner of each page in order to unlock the page.

Return Status
SS$~WASCLR

Service successfully completed.
pages was previously unlocked.

At least one of the specified

SS$_WASSET
Service successfully completed. All of the specified pages were
previously locked.
SS$_ACCVIO
1. The input array cannot be read by the caller, or the output
array cannot be written by the caller.
2. A page in the specified range is 1inaccessible or does not

exist.

200

SULKPAG -~ UNLOCK PAGES FROM MEMORY

Privilege Restrictions

1.

The user privilege PSWAPM is required to lock or unlock pages
from memory.

The access mode of the caller must be equal to or more
privileged than the access mode of the owner of the pages
that are to be unlocked.

If more than one page is being unlocked and it 1is necessary
to determine specifically which pages had been previously
unlocked, the pages should be unlocked one at a time.

If an error occurs while multiple pages are being unlocked,
the return array, if requested, indicates the pages that were
successfully unlocked before the error occurred. If no pages
were unlocked, both longwords of the return address array
contain a -1.

Locked pages are automatically unlocked at image exit, when
the system deletes the pages.

201

SULWSET -~ UNLOCK PAGES FROM WORKING SET

SULWSET

SULWSET -~ UNLOCK PAGES FROM WORKING SET

The Unlock Pages from Working Set system service allows a process to

speci
worki

fy that a group of pages that were previously locked in the
ng set are to be unlocked and become candidates for page

replacement like other working set pages.

Macro Format

SULWSET inadr ,[retadr] ,lacmode]

High-Level Language Format
SYSSULWSET (inadr , [retadr] ,[acmode])

inadr
Address of a 2-longword array containing the starting and ending
virtual addresses of the pages to be unlocked. 1If the starting
and ending virtual address are the same, a single page is
unlocked. Only the wvirtual page number portion of the virtual
addresses is used; the low-order 9 bits are ignored.

retadr
Address of a 2-longword array to receive the starting and ending
virtual addresses of the pages actually unlocked.

acmode
Access mode on behalf of which the request is being made. The
specified access mode 1is maximized with the access mode of the
caller. The resultant access mode must be equal to or more
privileged than the access mode of the owner of each page in
order to unlock the page.

Return Status

SS$_WASCLR
Service successfully completed. At least one of the specified
pages was previously unlocked.

SS$_WASSET
Service successfully completed. All of the specified pages were
previously locked in the working set.

SS$_ACCVIO

1. The input array cannot be read by the caller, or the output
array cannot be written by the caller.

2. A page in the specified range is 1inaccessible or does not
exist.

202

SULWSET - UNLOCK PAGES FROM WORKING SET

SS$_NOPRIV

A page in the specified range is in the system address space.

Privilege Restriction

The access mode of the caller must be equal to or more privileged

than the access mode of the owner of the pages that are to be
unlocked.
Notes
1. If more than one page is being unlocked and it 1is necessary
to determine specifically which pages had been previously
unlocked, the pages should be unlocked one at a time.
2., If an error occurs while multiple pages are being unlocked,

the return array, if requested, indicates the pages that were
successfully unlocked before the error occurred. If no pages

were unlocked, both longwords in the return address array
contain a -1.

203

SUNWIND - UNWIND CALL STACK

SUNWIND

SUNWIND - UNWIND CALL STACK

The Unwind Call Stack system service allows a condition-handling
routine to wunwind the procedure call stack to a specified depth.
Optionally, a new return address can be specified to alter the flow of
execution when the topmost call frame has been unwound.

Macro Format

SUNWIND [depadr] , [newpc]

High-Level Language Format
SYSSUNWIND ([depadr] , [newpc])

depadr

Address of a longword indicating the depth to which the stack is
to be unwound. A depth of 0 indicates the call frame that was
active when the condition occurred, 1 indicates the <caller of
that frame, 2 1indicates the caller of the caller of the frame,
and so on. If depth is specified as 0 or less, no unwind occurs;
a successful status code 1is returned. If no address is
specified, the unwind is performed to the caller of the frame
that established the condition handler.
newpc

Address to be given control when the unwind is complete.

Return Status

SS$_NORMAL
Service successfully completed.

SS$_ACCVIO
The call stack is not accessible to the caller. This condition
is detected when the call stack is scanned to modify the return

address.

SS$_INSFRAME

There are insufficient call frames to wunwind to the specified
depth.

SS$_NOSIGNAL

Warning. No signal 1is currently active for an exception
condition.

SS$_UNWINDING

Warning. An unwind is already in progress.

204

Notes

SUNWIND - UNWIND CALL STACK

The actual unwind is not performed immediately. Rather, the
return addresses in the call stack are modified so that when the
condition handler returns, the unwind procedure 1is called from
each frame that is being unwound.

For an explanation of condition handling and an example of a call to
SUNWIND, see Chapter 9, "Condition-Handling Services."

205

$UPDSEC - UPDATE SECTION FILE ON DISK

$UPDSEC

$UPDSEC - UPDATE SECTION FILE ON DISK

The Update Section File on Disk system service writes all modified
pages in an active private or global section back into the section
file on disk. One or more I/0 requests are queued, based on the
number of pages that have been modified.

Macro Format

SUPDSEC inadr ,[retadr] ,[acmode] ,[updflg] ,[efn] ,[iosb]
, [astadr] ,[astprm]

High-Level Language Format

SYSSUPDSEC (inadr , [retadr] ,[acmode] ,[updflg] ,[efn] ,[iosb]
,lastadr] ,[astprm])

inadr

Address of a 2-longword array containing the starting and ending
virtual addresses of the pages to be potentially written back
into the section file. The $UPDSEC system service locates pages
within this range that were modified and writes only the modified
pages (with contiguous pages, 1if convenient) back into the
section file on disk.

If the starting and ending virtual addresses are the same, a
single page 1is a candidate for writing. Only the virtual page
number portion of the virtual addresses is used; the low-order 9
bits are ignored.

retadr

Address of a 2-longword array to receive the starting and ending
virtual addresses of the first and last pages queued for writing
in the first I/0 request.

acmode

Access mode on behalf of which the service 1is performed. The
specified access mode 1is maximized with the access mode of the
caller. The resultant access mode is used to determine whether
the caller can actually write the pages.

updflg

efn

Update indicator for read/write global sections. 1If specified as
0 (the default), all read/write pages in the global section are
updated in the section file on disk, regardless of whether or not
they have been modified. If specified as 1, the caller is the
only process actually writing the global section, and only those
pages that were actually modified by the caller are to be
written.

Number of an event flag to set when the section file is wupdated.
If not specified, it defaults to 0.

206

SUPDSEC - UPDATE SECTION FILE ON DISK

iosb
Address of a quadword I/0 status block that 1is to receive the
completion status when the section file has been updated.

astadr
Address of the entry mask of an AST service routine to be
executed when the section file has been updated. If specified,
the AST service routine executes at the access mode from which
the section file update was requested.

astprm

AST parameter to be passed to the AST service routine.
Return Status
SS$_NORMAL

Service successfully completed. One or more I/0 requests were
queued.

SS$_NOTMODIFIED
Service successfully completed. No pages in the 1input address
range were section pages that had been modified; no I/0 reguests
were queued.

Ss$_ACCVIO

The input address array cannot be read by the caller, or the
output address array cannot be written by the caller.

SS$_EXQUOTA

The process has exceeded its AST limit quota.
SS$_ILLEFC

An illegal event flag number was specified.
SS$_IVSECFLG

An invalid flag was specified.
SS$_NOTCREATOR

The section is in memory shared by multiple processors and was
created by a process on another processor.

SS$_NOPRIV
A page in the specified range is in the system address space.
SS$_PAGOWNVIO

A page in the specified range is owned by an access mode more
privileged than the access mode of the caller.

SS$_SHMNOTCNCT

The section is specified as being in memory shared by multiple
processors, but this shared memory is not known to the system.

207

SUPDSEC - UPDATE SECTION FILE ON DISK

SS$_UNASCEFC

The process is not associated with the <cluster <containing the
specified event flag.

Privilege Restrictions

Only pages that are owned by the calling or a 1less privileged
access mode canh be updated.

Resources Required/Returned

The Update Section File on Disk system service requires the
process's direct I/0 1limit (DIRIO) to queue the I/O request;

and,

if the ASTADR argument is specified, the process's AST limit

quota (ASTLM).

Notes

The S$UPDSEC system service scans pages starting at the
address contained in the first 1longword of the location
pointed to by the INADR argument and ending with the address
in the second 1longword. Within this range, pages are
candidates for being updated based on whether they are
read/write pages that were modified. Unmodified pages that
share a cluster with modified pages are also written. The
ending address can be lower than the starting address.

If the SUPDSEC system service returns an error, both
longwords in the return address array contain a -1. In this
case, no I/0 completion is indicated, that is, the event flag
is not set, no AST is delivered, and the I/O status block is
not posted.

Proper use of this service requires the caller to synchronize
completion of the update request by checking the return
status from $UPDSEC. If SS$ NOTMODIFIED 1is returned, the
caller can continue. If SS% NORMAL is returned, the caller
should wait for the I/0 to complete and then check the status
returned in the I/0 status block.

When all 1/0 is complete, the I/0 status block, if specified,
is filled in as follows: :

a. The first word contains the completion status of the
output request.

b. If an error occurred in the I/0 request, the first bit in
the second word 1is set if a hardware write error
occurred.

c. The second longword contains the virtual address of the
first page that was not written.

For a global section located in memory shared by multiple
processors, only processes running on the processor that
created the section can call the SUPDSEC service specifying
that section. Processes on another processor that attempt to
update the section file will receive an error status code
indicating that the request was not performed.

208

SWAITFR - WAIT FOR SINGLE EVENT FLAG

SWAITFR

SWAITFR - WAIT FOR SINGLE EVENT FLAG

The Wait for Single Event Flag system service tests a specific event
flag and returns immediately if the flag is set. Otherwise, the
process is placed in a wait state until the event flag is set.

Macro Format

SWAITFR efn

High-Level Language Format
SYSSWAITFR (efn)
efn

Number of the event flag for which to wait.

Return Status
SS$_NORMAL
Service successfully completed.
SS$_ILLEFC
An illegal event flag number was specified.
SS$_UNASEFC
The process is not associated with the cluster <containing the

specified event flag.

Notes

The wait state caused by this service can be interrupted by an
asynchronous system trap (AST) if (1) the access mode at which
the AST executes is less than or equal to the access mode from
which the wait was issued and (2) the process is enabled for ASTs
at that access mode.

When the AST service routine completes execution, the system

repeats the SWAITFR request. If the event flag has been set, the
process resumes execution,

209

SWAKE - WAKE

$WAKE

SWAKE - WAKE

The Wake system service activates a process that has placed itself in
a state of hibernation with the Hibernate ($SHIBER) system service.
Macro Format

SWAKE [pidadr] ,[prcnam]

High-Level Language Format
SYSSWAKE ([pidadr] , [prcnam])
pidadr

Address of a longword containing the process identification of
the process to be awakened.

prcnam
Address of a character string descriptor pointing to the process
name string. The name is implicitly qualified by the group
number of the process issuing the wake.
If neither a process identification nor a process name 1is specified,
the wake request 1is for the caller. For details on how the service
interprets the PIDADR and PRCNAM arguments, see Table 7-1 in Chapter
7, "Process Control Services."
Return Status
SS$_NORMAL
Service successfully completed.
SS$_ACCVIO
The process name string or string descriptor cannot be read by
the caller, or the process identification cannot be written by
the caller.

SS$_IVLOGNAM

The specified process name string has a length of 0 or has more
than 15 characters.

SS$_NONEXPR

Warning. The specified process does not exist, or an invalid
process identification was specified.

S55$_NOPRIV

The process does not have the privilege to wake the specified
process.

210

SWAKE - WAKE

Privilege Restrictions

User privileges are required to wake:

Notes

2.

Other processes in the same group (GROUP privilege)

Any other process in the system (WORLD privlege)

If one or more wake requests are issued for a process that is
not currently hibernating, a subsequent hibernate request
completes immediately, that is, the process does not
hibernate. No count 1is maintained of outstanding wakeup
requests.

A hibernating process can also be awakened with the Schedule
Wakeup (SSCHDWK) system service,

For an example of the $SWAKE system service and a discussion of the
hibernate/wake mechanism, see Chapter 7, "Process Control Services."

211

SWFLAND - WAIT FOR LOGICAL AND OF EVENT FLAGS

$WFLAND

SWFLAND - WAIT FOR LOGICAL AND OF EVENT FLAGS

The Wait for Logical AND of Event Flags system service allows a
process to specify a mask of event flags for which it wishes to wait.
All of the indicated event flags within a specified event cluster must
be set; otherwise, the process is placed in a wait state until they
are all set.

Macro Format

SWFLAND efn ,mask

High-Level Language Format
SYSSWFLAND (efn ,mask)

efn
Number of any event flag within the cluster being used.

mask
32-bit mask in which bits set to 1 indicate the event flags
within the cluster that must be set.

Return Status

SS_NORMAL
Service successfully completed.

SS$_ILLEFC
An illegal event flag number was specified.

SS$_UNASEFC
The process is not associated with the <cluster containing the
specified event flag.

Notes
The wait state caused by this service can be interrupted by an
asynchronous system trap (AST) if (1) the access mode at which
the AST is to execute is less than or equal to the access mode
from which the wait was issued and (2) the process is enabled for
ASTs at that access mode.
When the AST service routine completes execution, the system
repeats the $WFLAND request. If the specified event flags are

all set, the process resumes execution.

For an example of the SWFLAND system service, see Chapter 3, "Event
Flag Services."

212

SWFLOR - WAIT FOR LOGICAL OR OF EVENT FLAGS

$WFLOR

SWFLOR - WAIT FOR LOGICAL OR OF EVENT FLAGS

The Wait for Logical OR of Event Flags system service tests the event
flags specified by a mask within a specified cluster and returns
immediately if any of them is set. Otherwise, the process is placed
in a wait state until at least one of the selected event flags is set.

Macro Format

SWFLOR efn ,mask

High-Level Language Format
SYSSWFLOR (efn ,mask)
efn
Number of any event flag within the cluster being used.
mask
}2—bit mask in which bits set to 1 indicate the event flags of
interest.
Return Status
SS$_NORMAL
Service successfully completed.
SS$_ILLEFC
An illegal event flag number was specified.
SS$_UNASEFC

The process is not associated with the <cluster containing the
specified event flag.

Notes

The wait state caused by this service can be interrupted by an
asynchronous system trap (AST) if (1) the access mode at which
the AST is to execute is less than or equal to the access mode
from which the wait was issued and (2) the process is enabled for
ASTs at that access mode.

When the AST service routine completes execution, the system

repeats the S$WFLOR request. If any of the event flags has been
set, the process resumes execution.

213

APPENDIX A

SYSTEM SYMBOLIC DEFINITION MACROS

This appendix summarizes system-provided macros that define symbolic
values for use with system services, and lists the symbols defined by
each macro. The macros listed in this appendix are:

Macro Symbols Defined

SIODEF Symbolic names for I/O0 function codes

$MSGDEF Symbolic names to identify mailbox message senders
SPRDEF Internal processor registers

SPRTDEF Symbolic names for hardware protection codes

$SPSLDEF Processor status longword (PSL) mask and field

definitions, and symbolic names for access modes
$SSDEF Symbolic names for system status codes

The symbolic definitions generated by each of the above macros are
listed on the following pages. Definitions generated by the following
macros are listed elsewhere in this manual (consult the Index for page
number references).

Macro Symbols Defined
SACCDEF Accounting manager request type codes and process
termination message and accounting record

information offsets
SCHFDEF Condition handler argument offsets
SDIBDEF Device information buffer offsets

$JIBCMSGDEF Job controller return status codes (Symbols are in
SYSSLIBRARY:LIB.MLB.)

SJPIDEF Job/process information request type codes

$OPCDEF Operator communication manager request type codes,
buffer offsets, and return status codes

SPQLDEF Quota types for process creation quota list

$PRVDEF User privileges

$SECDEF Attribute flags for private/global section creation

and mapping

SSMRDEF Symbiont manager request type and option codes

A-1

SYSTEM SYMBOLIC DEFINITION MACROS

A.l1 USING SYSTEM SYMBOLS

The default system macro 1library, STARLET.MLB, contains the macro
definitions for most system symbols, When you assemble a source
program that calls any of these macros, the assembler automatically
searches STARLET.MLB for the macro definitions.

Each symbol name has a numeric value. To obtain a list of symbols and
their values in alphabetic order, use the following procedure:

1. Create a file with the file type of MAR containing the lines:

S DEF

NI
where xx is the prefix of the macro defining the symbols vyou
need, for example, $SSDEF or $MSGDEF. You can specify more
than one macro in the same assembly source file to obtain the
numeric values for more than one set of definitions.

2. Assemble the file and request a 1listing with the MACRO
command:

% MACROZLIST file-name

where file-name is the file name of the file <containing the
$xxDEF macro call(s). The input file type defaults to MAR.

The symbols and their hexadecimal values appear in the
listing file file-name.LIS.

A.2 SIODEF MACRO - SYMBOLIC NAMES FOR I/0 FUNCTION CODES
The function codes and function modifiers defined in the S$IODEF macro
are grouped according to the devices for which the I/0 operation is
requested. For your convenience, the arguments (Pl1, P2, and so .on),
are also listed. This section provides information for the following
device drivers:

e Terminal driver

e Disk drivers

e Magnetic tape drivers

e Line printer driver

e Card reader driver

e Mailbox driver

e DMCll driver

® ACP interface driver

e LPA-11 driver

e DR32 driver
For detailed information on the functions, arguments, and modifiers

accepted by a specific device driver, see the appropriate chapter in
the VAX/VMS I/0 User's Guide.

SYSTEM SYMBOLIC DEFINITION MACROS

A.2.1 Terminal Driver

Functions Arguments
10$_READVBLK Pl - buffer address
I0S_READLBLK P2 - buffer size
I0S_READPBLK P3 - timeout
I0$_READPROMPT P4 - read terminator

block address
P5 - prompt string

buffer address?l
P6 - prompt string

buffer sizel

I0$ WRITEVBLK Pl - buffer address
I0$_WRITELBLK P2 - buffer size
I0$ WRITEPBLK P3 - (ignored)

- P4 - carriage control

specifier?2

I0$_SETMODE Pl - characteristics
I0S_SETCHAR buffer address
P2 - (ignored)

P3 - speed specifier
P4 - fill specifier
P5 - parity flags

I10S_SETMODE!IO$M_HANGUP (none)
I0$_SETCHAR!IOSM_HANGUP

I0$_SETMODE!IOSM CTRLCAST Pl - AST service

I0$_SETMODE!IOSM_CTRLYAST routine address

I0$_SETCHAR!IOSM CTRLCAST P2 AST parameter

IOS_SETCHAR!IO$M CTRLYAST P3 - access mode to
- deliver AST

1. Only for IOS_READPROMPT

2. Only for IO$_WRITELBLK and I0S_WRITEVBLK

Modifiers

I0$M_NOECHO
IOSM_CVTLOW
IOSM_NOFILTR
IOSM_TIMED
I0$M_PURGE
I0$M_DSABLMBX
IO$M_TRMNOECHO
I0$SM_REFRESH

I0$M_CANCTRLO
I0$M_ENABLMBX
I0$M_NOFORMAT
IO$M_REFRESH

SYSTEM SYMBOLIC DEFINITION MACROS

A.2.2 Disk Drivers

Functions Arguments Modifiers
10$_READVBLK Pl - buffer address I0SM_DATACHECK
I0$_READLBLK P2 - byte count IO$M_INHRETRY
I0$_READPBLK P3 - disk address IO$M_INHSEEK1
I0$_WRITEVBLK IO$M_DELDATA4,5

I0$_WRITELBLK
I0$_WRITEPBLK

I0$ SETMODE Pl -~ characteristic buffer I0$_INHRETRY
I0$_SETCHAR -address
I0$_CREATE Pl - FIB descriptor address I0SM_CREATE?Z
10$ ACCESS P2 - file name string IO$M ACCESS?2
10$_DEACCESS address I0$M_DELETE3
I10$ MODIFY P3 - result string length
I0$ DELETE address
- P4 - result string descriptor
address

P5 - attribute list address

I0$_FORMATS Pl - density with which to
reformat the diskette

1. Only for IO$_READPBLK and IO$_WRITEPBLK
2. Only for IO$_CREATE and IO$_ACCESS

3. Only for IOS_CREATE and IO$_DELETE

4, Only for IO$_WRITE_PBLK

5. Only for RX02 diskette

SYSTEM SYMBOLIC DEFINITION

A.2.3 Magnetic Tape Drivers

Functions

I0$_READVBLK Pl
I0$_READLBLK P2
I0$_READPBLK
I0$_WRITEVBLK
10$_WRITELBLK
I0$_WRITEPBLK

I0$_SETMODE Pl
I0$_SETCHAR

I0$_CREATE Pl
I0$_ACCESS P2
I0$__DEACCESS
I10$_ MODIFY P3
I0$_ACPCONTROL
P4
P5

I0$_SKIPFILE Pl

I0$_SKIPRECORD Pl

Arguments

buffer address
byte count

characteristics buffer

address

FIB descriptor address

file name stri
address

result string length

address

result string descriptor

address

attribute list address

skip n tape marks

skip n records

I0$_MOUNT (none)

I0$ REWIND (none)

I0$_REWINDOFF

I0S_WRITEOF (none)

I0$_SENSEMODE (none)

1. Only for read functions

2, Only for write functions

ng

3. Only for IO$_CREATE and IO$_ACCESS

4. Only for IO$_ACPCONTROL

MACROS

Modifiers

I0SM_DATACHECK
I0SM_INHRETRY
I0$M_REVERSE!
I0SM_INHEXTGAP 2

I0$M_INHRETRY
I0$M_INHEXTGAP

I0$M CREATE 3

I0$M_ACCESS 3
10$M_DMOUNT 4

I0SM_INHRETRY

I0$M_INHRETRY

I0$M_INHRETRY
IO$M_NOWAIT

I0$M_INHEXTGAP
I0$M_INHRETRY

I0$M_INHRETRY

Arguments

buffer address
buffer size

carriage control
specifierl

A.2.4 Line Printer Driver
Functions
IO$_WRITEVBLK Pl
IO$_WRITELBLK P2
IOS_WRITEPBLK P3 (ignored)
P4
I0$ SETMODE Pl

I0$_SETCHAR

characteristics buffer
address

1. only for IO$_WRITEVBLK and I0$_WRITELBLK

A.2.5
Functions
IOS“READLBLK
IOS_READVBLK
IOS_READPBLK

10$_SETMODE
I0$_SETCHAR

I0S_SENSEMODE

A.2.6

Functions

I10$_READVBLK
I0$__READLBLK
I0$_READPBLK
I0$_WRITEVBLK
I0$_WRITELBLK
I0$_WRITEPBLK

I0S_WRITEOF

Card Reader Driver

Arguments

Pl - buffer address
P2 - byte count

Pl - characteristics
buffer address.

(none)

Mailbox Driver

Arguments

Pl - buffer address
P2 - buffer size

(none)

IO$_SETMODE!IO$M_READATTN
I0$_SETMODE!IOSM_WRTATTN

Pl - AST address
Pl - AST parameter

SYSTEM SYMBOLIC DEFINITION MACROS

Modifiers

(none)

(none)

Modifiers

I0$M_BINARY
I0$M_PACKED

(none)

Modifiers

I0$M_NOW

SYSTEM SYMBOLIC DEFINITION MACROS

A.2.7 DMCll Driver

Functions Arguments Modifiers
IO$_READLBLK Pl - buffer address IO$M_DSABLMBX1
I0S_READPBLK P2 - message size IOSM_NOW1
I0$_READVBLK P6 - diagnostic buffer2 IO$M_ENABLMBX3

I0$_WRITELBLK
I0$_WRITEPBLK
I0$_WRITEVBLK

10$_SETMODE Pl - characteristics
I0$_SETCHAR buffer address

I0S_SETMODE!IOS$M_ATTNAST Pl - AST service
I0S SETCHAR!IOSM ATTNAST routine address
- - P2 - (ignored)
P3 - AST access mode

I0$ SETMODE!IOSM SHUTDOWN Pl - characteristics

I0$_SETCHAR!IOSM_SHUTDOWN block address
I0S_SETMODE!IOSM STARTUP Pl - characteristics
I0$_SETCHAR!IOSM_STARTUP block address
P2 - (ignored)
P3 - receive message
blocks

1. only for IO$_READLBLK and I0$ READPBLK
2. Only for IO$_READPBLK and I0$_WRITEPBLK
3. Only for IO$_WRITELBLK and I0$_WRITEPBLK

A.2.8 ACP Interface Driver

Functions Arguments Modifiers
I0$ CREATE Pl - FIB descriptor address I0$M CREATE!
10$~ ACCESS P2 - file name string I0$M ACCESS !
I0$ DEACCESS address T0$M DELETE 2
10$_MODIFY P3 - result string length 10$M_DMOUNT 3
I0$ DELETE address -

I0$ ACPCONTROL P4 - result string descriptor

- address

P5 - attribute list address
I0$_MOUNT (none)
1. Only for IO$_CREATE and IO$_ACCESS

2. Only for IO$_CREATE and IO$_DELETE
3. Only for IO$_ACPCONTROL

SYSTEM SYMBOLIC DEFINITION MACROS

A.2.9 LPA-11 Driver

Functions

I0$_LOADMCODE

I0_STARTPROC

IO$_INITIALIZE

I10$_SETCLOCK

I0$_STARTDATA

Arguments

Pl - address of microcode image
P2 - size of microcode image
P3 - starting microcode address

(none)

Pl - address of initialization table
P2 - size of table

P2 - mode word
P3 - clock control and status
P4 - clock preset

Pl - starting address of command
table

P2 - length of command table

P3 - AST address of normal buffer
completion AST routine

P4 - AST address of buffer overrun
completion AST routine

A.,2.10 DR32 Driver

Functions

I0$_LOADMCODE

I0$_STARTDATA

Arguments

Pl - address of microcode
P2 size of microcode

Pl - address of command table
P2 size of command table

Modifiers

I0$M_SETEVF

Modifiers

I0SM_SETEVF

SYSTEM SYMBOLIC DEFINITION MACROS

A.3 S$MSGDEF MACRO - SYMBOLIC NAMES FOR SYSTEM MAILBOX MESSAGES

Symbolic Name Meaning

MSGS$ TRMUNSOLIC Unsolicited terminal data
MSGS__CRUNSOLIC Unsolicited card reader data
MSG$ DELPROC Delete process

MSG$_SNDSMB Send to symbiont manager
MSG$_DEVOFFLIN Device offline

MSG$ TRMHANGUP Terminal hangup

MSGS™ DEVONLIN Device online

MSG$__OPRQST Operator request

MSG$ OPREPLY Operator reply

MSG$ SMBINI Symbiont is initiated

MSGS$™ SMBDON Symbiont has finished

MSG$~ SNDACC Send to accounting manager
MSG$~ XM DATAVL Data available (DMC-11)
MSG$~ XM_SHUTDN Unit shutdown (DMC-11)
MSGS$~ XM ATTN Unit attention (DMC-11)
MSG$™ INTIOPR Initiate file printing
MSGS$S_ABOOPR Abort printing a file
MSG$_SUSOPR Pause printing a file

MSGS$ RESOPR Resume printing a file
MSG$_DELSMB Symbiont should delete itself
MSG$_SMBRSP Symbiont response

MSGS$ ACCRSP Accounting manager response

MSGS$__SCANBAD
MSG$_SCANRSP

MSGS$ ABORT Network partner aborted link
MSGS$__CONFIRM Network connect confirm
MSG$_CONNECT Network inbound connect initiate
MSG$_DISCON Network partner disconnected-hangup
MSGS_EXIT Network partner exited prematurely
MSG$ INTMSG Network interrupt message; unsolicited data
MSGS PATHLOST Network path lost to partner

MSG$™ PROTOCOL Network protocol error

MSG$ REJECT Network connect reject

MSGS™ THIRDPARTY Network third party disconnect
MSG$_TIMEOUT Network connect timeout

SYSTEM SYMBOLIC DEFINITION MACROS

A.4 SPRDEF MACRO - SYMBOLIC NAMES FOR PROCESSOR REGISTERS

Symbolic Name Register

PRS_KSP Kernel stack pointer

PR$_ESP Executive stack pointer

PRS$ SSP Supervisor stack pointer

PR$__USP User stack pointer

PRS_ISP Interrupt stack pointer

PRS POBR P0 base register

PRS POLR PO limit register

PRS_P1BR Pl base register

PRS_PILR Pl limit register

PR$ SBR System base register

PR$_SLR System limit register

PRS PCBB Process control block base register
PRS_SCBB System control block bhase register
PRS IPL Interrupt priority level register
PRS_ASTLVL AST level register

PR$_SIRR Software interrupt request register
PR$_SISR Software interrupt summary register
PRS_MAPEN Mapping enable register

PR$ TBIA Translation buffer invalidate all
PR$_TBIS Translation buffer invalidate single
PRS_ICCS Interval clock control status register
PR$_NICR Interval clock next interval register
PRS_ICR Interval clock interval count register
PRS_TODR Time of day register

PRS_RXCS Console receiver control status register
PRS_RXDB Console receiver data buffer register
PRS_TXCS Console transmit control status register
PRS TXDB Console transmit data buffer register
PR$:ACCS Accelerator control status register
PRS ACCR Accelerator reserved

PR$ PME Performance monitor enable

PR$_SID System identification register

PRS WCSA WCS address register

PR$_WCSD WCS data register

PR$_SBIFS SBI fault status register

PRS$ SBIS SBI silo register

PRS$™ SBISC . SBI comparator register

PRS SBIMT SBI maintenance register

PR$™SBIER SBI error register

PR$_SBITA SBI timeout address register
PRS_SBIQC SBI quadword clear register

A-10

A.5

A.6

SYSTEM SYMBOLIC DEFINITION MACROS

$PRTDEF - HARDWARE PROTECTION CODE DEFINITIONS

Symbolic Name

PRT$C_NA
PRT$C_KR
PRT$C_KW
PRT$C_ER
PRT$C_EW
PRTSC_SR
PRT$C_SW
PRT$C_UR
PRTSC_UW
PRT$C_ERKW
PRTSC_SRKW
PRT$C_SREW
PRT$C_URKW
PRT$C_UREW
PRTSC_URSW

Meaning

No access

Kernel read only

Kernel write

Executive read only

Executive write

Supervisor read only
Supervisor write

User read only

User write

Executive read; kernel write
Supervisor read; kernel write
Supervisor read; executive write
User read; kernel write

User read; executive write
User read; supervisor write

$PSLDEF MACRO - PROCESSOR STATUS LONGWORD SYMBOL DEFINITIONS

Symbolic Name

PSLSV_TBIT
PSL$S TBIT
PSL$M TBIT
PSL$V_IV
PSL$S_IV
PSLSM_IV
PSL$V_FU
PSLSS FU
PSL$M FU
PSLSV_DV
PSL$S DV
PSLSM DV
PSLSV_IPL
PSL$S IPL
PSL$V PRVMOD
PSL$S PRVMOD
PSLSV CURMOD
PSL$S_CURMOD
PSLSV_IS
PSL$S IS
PSLSM IS
PSL$V_FPD
PSL$S_FPD
PSLSM_FPD
PSLSV_TP
PSLSS TP
PSL$SM_TP
PSLSV_CM
PSLS$S_CM
PSL$M_CM

Meaning

TBIT enable field

Length of TBIT enable field

Mask for TBIT enable field

Integer overflow field

Length of integer overflow field
Mask for integer overflow field
Floating undefined field

Length of floating undefined field
Mask for floating undefined field
Divide by zero field

Length of divide by zero field
Mask for divide by zero field
Interrupt priority field

Length of interrupt priority field
Previous processor mode field
Length of previous processor mode field
Current processor mode field
Length of current processor mode field
Interrupt stack field

Length of interrupt stack field
Mask for interrupt stack field
First part done field

Length of first part done field
Mask for first part done field
Trace trap pending field

Length of trace trap pending field
Mask for trace trap pending field
Compatibility mode field

Length of compatibility mode field
Mask for compatibility mode field

Symbolic Names for Access Modes

Symbolic Name Access Mode Number

PSLSC_KERNEL Kernel 0
PSLSC_EXEC Executive 1
PSLSC_SUPER Supervisor 2
PSL$C_USER User 3

A-11

SYSTEM SYMBOLIC DEFINITION MACROS

A.7 $SSDEF MACRO - SYMBOLIC NAMES FOR SYSTEM STATUS CODES

The $SSDEF macro instruction defines symbolic names for system service
and for exception condition names. The "Type"
column, below, indicates one of the following:

return status

Type

sSuccess
Warning
Error
Severe
Condition

Status Code

SS$_ABORT
SS$_ACCONFLICT
SS$_ACCQUOTA

SS$_ACCVIO
SS$_ACCVIO
SS$_ACPVAFUL

SS$_ARTRES
SS$_ASTFLT

SS$” BADATTRIB
SS$T BADCHKSUM
SS$_BADESCAPE
SS$ BADFILEHDR
SS$” BADFILENAME
SS$ BADFILEVER
SS$TBADIMGHDR
S BADIRECTORY
SS$”_BADISD

SSS$ BADPARAM
SS$ BADQFILE
SS$_BADQUEUEHDR
SS$_BADSTACK

SS$_BADVEC

SS$ BEGOFFILE
SS$” BLOCKCNTERR
SS$_BREAK
SS$_BUFBYTALI

SS8$_BUFFEROVF
SS$_BUFNOTALIGN
SS$_BUGCHECK
SS$_CANCEL
SS$_CHANINTLK
SS$_CLIFRCEXT
SS$_CMODSUPR
SS$_CMODUSER
SSS$__COMPAT
SS$_CONTINUE

SS$_CONTROLC
S§5$_CONTROLO
SS$_CONTROLY
SS$_CREATED

Meaning

Successful completion

Warning return
Error return

Severe error return
Exception condition

Type

Severe
Warning
Severe

Severe
Condition
Severe

Condition
Condition
Severe
Warning
Severe
Warning
Warning
Warning
Severe
Warning
Severe
Severe
Severe
Severe
Severe

Severe

Warning
Warning
Condition
Severe

Success
Severe
Severe
Warning
Severe
Warning
Condition
Condition
Condition
Success

Success
Success
Success
Success

Meaning

Abort

File access conflict

ACCOUNT had inadequate quota at
remote mode

Access violation

Access violation

MTAACP's virtual address space is
full

Reserved arithmetic trap

AST fault

Bad attribute control list

Bad file header checksum

Syntax error in escape sequence
Bad file header

Bad file name syntax

Bad file version number

Bad image header

Bad directory file format

Illegal image section descriptor
Bad parameter value

Invalid disk quota file format
Interlocked queue corrupted
Bad stack encountered
exception dispatch

Invalid charge-mode or
vector

Beginning of file

Block count error
Breakpoint instruction fault
Device does not support
byte-aligned transfers

Output buffer overflow

Buffer incorrectly aligned
Internal consistency failure

I/0 operation canceled

Channel usage interlocked

CLI forced exit

Change mode to supervisor trap
Change mode to user trap
Compatibility mode fault

Continue execution at point of
condition

Operation completed under CRTL/C
Output completed under CTRL/O
Operation completed under CTRL/Y
File did not exist; was created

during

message

A-12

Status Code

SSS_CTRLERR
Ss$_DATACHECK
SS$_DATAOVERUN
SS$”_DEBUG

SS$_DECOVF
SS$_DEVACTIVE
SS$_DEVALLOC

S5 _DEVALRALLOC

SS$ DEVASSIGN
SS$_DEVCMDERR
SS$ DEVFOREIGN
SS8$ DEVICEFULL
S DEVMOUNT
SS$~_DEVNOTALLOC
SS$_DEVNOTMBX
SS$”_DEVNOTMOUNT
SS$ DEVOFFLINE
SS$ DEVREQERR
SS$_DIRFULL
SS$_DISCONNECT

SS$_DRVERR

SS$ DUPDSKQUOTA
SS$ DUPFILENAME
SS$”_DUPLNAM
SS$_ENDOFFILE
SS$__ENDOFTAPE
SS$”ENDOFUSRLBL
SS$_ENDOFVOLUME
SS$__EXCPUTIM
SS$__EXDISKQUOTA
SS$__EXPORTQUOTA

SS$_EXQUOTA
SSs$__FCPREADERR
SS$__FCPREPSTN
SS$__FCPREWNDERR
SS$__FCPSPACERR
SS$_FCPWRITERR
SS$__FILACCERR

SS$_FILALRACC
S5$_FILELOCKED
SS$_FILENUMCHK
SS$”_FILEPURGED
SS$” FILESEQCHK
SSTFILESTRUCT
5S$~ FILNOTACC
SS$TFILNOTCNTG
SS$” FILNOTEXP
SS$” FLTDIV
SS$_FLTDIV_F
SS$ FLTOVF
Ss$__FLTOVF_F
SS$~ FLTUND
SS$TFLTUND F
SSS$”FORMAT
SS$_GPTFULL

Type

Severe
Severe
Warning
Condition

Condition

Severe

Warning
Success

Warning
Severe
Severe
Warning
Severe
Warning
Severe
Severe
Severe
Severe
Warning
Severe

Severe
Severe
Warning
Severe
Warning
Warning
Warning
Warning
Severe
Severe
Severe

Severe

Warning
Warning
Warning
Warning
Warning
Severe

Severe
Warning
Warning
Success
Warning
Warning
Severe
Severe
Severe
Condition
Condition
Condition
Condition
Condition
Condition
Severe
Severe

SYSTEM SYMBOLIC DEFINITION MACROS

Meaning

Fatal controller error
Write check error
Data overrun

Command interpreter debugger
signal

Decimal overflow

Device active

Device already allocated to

another user

Device already allocated to this
job

Device has channels assigned
Device command error

Device is mounted foreign

Device full - allocation failure
Device is already mounted

Device not allocated

Device not mailbox

Device not mounted

Device not in configuration

Device request error

Directory is full

Process is disconnected from the
requested interrupt vector

Fatal drive error

Duplicate disk quota file entry
Duplicate file name

Duplicate process name

End of file reached

End of tape

End of user labels

End of volume

CPU time limit expired

Disk quota exceeded

Exceeded quota permitted by
processes on this port of a
multiport (shared) memory

Exceeded quota

File
File
File
File
File

processor
processor
processor
processor
processor

read error
reposition error
rewind error
space error
write error

Magnetic access
non-blank

File already accessed on channel
File is deaccess locked

File ID file number check

Oldest file version purged

File ID file sequence number check
Unsupported file structure level
File not accessed on channel

File is not contiguous as required
File not expired

Floating/decimal divide by zero
Floating divide by zero fault
Floating overflow

Floating overflow fault

Floating underflow)

Floating underflow fault

Invalid media format

Global page table full

tape file

A-13

Status Code
SS$_GSDFULL

SS$_HANGUP
SS$_HEADERFULL
SS$_IDMISMATCH

SS$_IDXFILEFULL
SS$_ILLBLKNUM
SS$_ILLCNTRFUNC
Ss$_ILLEFC
S_ILLIOFUNC
SS$_ILLLBLAST

SS$_ILLPAGCNT
SS$_ILLSEQOP
SSS$_ILLSER
SS$_ILLUSRLBLRD
SS$_ILLUSRLBLWT
SS$__INCVOLLABEL
SS$_INSFARG
SS$”INSFBUFDP

SSS INSFMAPREG
SS$TINSFMEM
SS$__INSFRAME
SS$_INSFSPTS

SS$_INSFWSL
SS$_INTDIV
S8$_INTERLOCK

SS$_INTOVF
SS$TINVLOGIN

SS$_IVADDR
SS$_IVBUFLEN
SS$”IVCHAN
SS$_IVCHNLSEC

Ss$_IVDEVNAM
SS$_IVGSDNAM
SS$_IVLOGNAM
SS$_IVLOGTAB
Ss$_IVLVEC

SS$_IVMODE

SS$_IVPROTECT
SS$_IVQUOTAL
SS$_IVSECFLG

SS$_IVSECIDCTL

SS$_IVSSQR
Ss8$_IVSTSFLG
SS$_IVTIME
SS$__LCKPAGFUL

§S$_LENVIO
SS$_LKWSETFUL

SYSTEM SYMBOLIC DEFINITION MACROS

Type
Severe

Severe
Warning
Severe

Warning
Severe
Severe
Severe
Severe
Warning

Severe
Severe
Severe
Warning
Warning
Severe
Severe
Severe

Severe
Severe
Severe
Severe

Severe
Condition
Severe

Condition
Severe

Severe
Severe
Severe
Severe

Severe
Severe
Severe
Severe
Severe

Severe

Severe
Severe
Severe

Severe

Severe
Severe
Severe
Severe

Severe
Severe

Meaning

Global section descriptor table
full

Data set hang-up

File header full

Identification does not match
existing section

Index file full

Illegal logical block number
Illegal ACP control function
Illegal event flag cluster

Illegal I/0 function code

Illegal wuser 1label AST control
block address

Illegal page count parameter
Illegal sequential operation
Illegal service call number
Illegal read of user labels
Illegal write of user labels
Incorrect volume label
Insufficient call arguments

Unable to allocate a buffered data
path

Insufficient map registers
Insufficient dynamic memory
Insufficient call frames to unwind
Insufficient system page table
entries to map process buffer to
system

Insufficient working set limit
Integer divide by zero

Unable to acquire system data
structure interlock

Integer overflow

Login information invalid at
remote mode

Invalid media address

Invalid buffer length

Invalid I/0 channel

Invalid channel for create and map
section

Invalid device name

Invalid global section name
Invalid logical name

Invalid logical name table number

Section not installed with
privilege
Invalid mode for requested
function

Invalid page protection code
Invalid quota list

Invalid process/global section
flags

Invalid section identification
match control

Invalid system service request
Invalid status flag

Invalid time

No more pages can be locked in
memory

Address space length violation
Locked portion of working set is
full

A-14

Status Code

SS$_MBFULL
SS$_MBTOOSML
SS$_MCHECK
SS$__MCNOTVALID
SS$_MEDOFL
SS$_MSGNOTFND
SS$_MTLBLLONG

SS$_MULTRMS

SS$_MUSTCLOSEFL
SS$_NOAQB
SS$_NODATA
SS$_NODISKQUOTA
SS$”NOHANDLER
SS$_NOHOMEBLK
SS$_NOIOCHAN
SSS$_NOLINKS
SS$_NOLOGNAM
SS$_NOMBX

SS$_NOMOREFILES
SS$_NOMOREPROC |
SS$_NONEXDRV
SSS_NONEXPR
SS$__NONLOCAL
SS$_NOP1VA

SS$_NOPRIV

SS$_NOQFILE
SSS_NORMAL
SS$_NOSHMBLOCK

5S$_NOSIGNAL
SS$_NOSLOT

S§S$_NOSOLICIT
SS$_NOSUCHDEV
SSS$_NOSUCHFILE
SS$_NOSUCHNODE
SS$_NOSUCHOBJ

SS$_NOSUCHSEC
SS$_NOSUCHUSER

SS$_NOTAPEOP
SS$_NOTCREATOR

SS$_NOTFILEDEV
SS$_NOTINSTALL

SS$ NOTINTBLSZ
SS$ NOTLABELMT
SS$_NOTMODIFIED
SS$ NOTNETDEV
SS$”_NOTRAN
SS$__NOTSQDEV
SS$_NOTVOLSET
SS$_NOWRT

SYSTEM SYMBOLIC DEFINITION MACROS

Type

Warning
Severe
Severe
Severe
Severe
success
Severe

Severe

Warning
Severe
Severe
Severe
Warning
Warning
Severe
Severe
Severe
Severe

Warning
Warning
Severe
Warning
Warning
Severe

Severe

Severe
Success
Severe

Warning
Severe

Severe
Warning
Warning
Severe
Severe

Warning
Severe

Severe
Severe

Severe
Severe

Severe
Severe
Success
Severe
Success
Severe
Warning
Severe

Meaning

Mailbox full

Mailbox is too small for request
Detected hardware error

Device microcode is not valid
Medium offline

Message not in system message file
Magnetic tape volume label can be
no more than six characters
Multiple RMS vectors specified for
privileged shareable image

Must close file

ACP queue header not found

Mailbox empty

No disk quota entry for this UIC
No condition handler found

Home block not found on volume

No I/O channel available

No slots in logical link vector

No logical name match

No associated mailbox for inbound
connects

No more files

No more processes found
Nonexistent drive

Nonexistent process

Nonlocal device

Pl space not supported in
shareable images
No privilege for attempted

operation

No disk quota file available
Normal successful completion

No free shared memory control
block available for creation

No signal currently active

No process control block or swap
slot available

Interrupt message not solicited

No such device available

No such file

Specified node does not exist
Networks object 1is wunknown at
remote mode

No such (global) section

Login information not recognized
at remote mode

No tape operator

Request denied: wuser 1is not on
creator port

Device is not file-structured
Writable shareable images must be
installed

Block size is greater than 2048
Not labeled tape

No section pages were modified

Not a network communication device
No string translation performed
Not sequential device

Volume is not part of a volume set
Cannot create writable section to
read-only file

A-15

Status Code

'SS$_OPCCUS

SS$~ OPCDEC

SS$~ OPINCOMPL
SS$_OPRABORT
SS$_OVRDSKQUOTA
SS$”_PAGOWNVIO
SS$__PAGRDERR
SS$ PARITY
SS$TPARTESCAPE
SS$__PFMBSY

SS$ PLHLDR

SS$ POWERFAIL
SS$__PRIVINSTALL

SS$ PROTINSTALL
SS PROTOCOL
SS$TPSTFULL

SS$ QFACTIVE
SSS$™ QFNOTACT
SS$TRADRMOD
SS$_RDDELDATA

SS$_REJECT
SS$_RELINK

SS$_REMOTE
SS$ REMRSRC
SS$ RESIGNAL
SS$ RESULTOVF
SS$T ROPRAND
SS$_SECTBLFUL

SS$_SHARTOOBIG
SS$_SHMGSNOTMAP

SS$_SHMNOTCNCT
SS$_SSFAIL
SS$”_SUBRNG
SS$_SUPERSEDE
SS$__SUSPENDED

SS$_SYSVERDIF

SS$_TAPEPOSLOST
SSS_TBIT
SS$_THIRDPARTY

SS$_TIMEOUT
SS$_TOOMANYLNAM

SS$_TOOMANYVER
SS$_TOOMUCHDATA

SS$_UNASEFC
SS$_UNREACHABLE
SS$_UNSAFE
SS$_UNWIND
SS$_UNWINDING
SS$_VASFULL

SYSTEM SYMBOLIC

Type

Condition
Condition
Severe
Severe
Success
Severe
Condition
Severe
Severe
Severe
Condition
Severe
Severe

Severe
Severe
Severe
Severe
Severe
Condition
Success

Severe
Severe

Success

Severe
Warning
Severe
Condition
Severe

Severe
Severe

Severe
Condition
Condition
Success
Severe

Success

Severe
Condition
Severe

Severe
Severe

Warning
Severe

Severe
Severe
Severe
Warning
Warning
Severe

DEFINITION MACROS

Meaning

Opcode reserved to customer fault
Opcode reserved to DIGITAL fault
Operation incomplete

Aborted by operator

Disk usage exceeds disk quota

Page owner violation

Page read error

Parity error

Partial escape

Page fault monitor in use

Reserved for future use

Power failure occurred

Shareable images must be installed
to run privileged image

Protected images must bhe installed
Network protocol error

Process section table is full

Disk quota file is already active
Disk quota file is not active
Reserved addressing fault

Sector contained deleted data
address mark

Network connect rejected

Obsolete image header - please
relink '
Assignment completed on remote
node

Resource error at remote node
Resignal condition to next handler
Resultant string overflow

Reserved operand fault

Section table (process/global)
full

New version of shareable image too
big - relink all images

Shared memory global section not
mapped during creation

Shared memory not connected

System service failure exception
Subscript range trap

Logical name superseded

Process suspended or in
miscellaneous wait state

Privilege removed - system version
mismatch - please relink

Magnetic tape position lost

Tbit pending fault

Logical 1link disconnected by a
third party

Device timeout

Logical name translation exceeded
allowed depth

Too many higher file versions

Too much optional or interrupt
message data

Unassociated event flag cluster
Node is known but unreachable
Drive unsafe

Unwind currently in progress
Unwind already in progress

Virtual address space full

A-16

Status Code
S_VECFULL

SS$_VECINUSE
SS$_VOLINV
SSS$_WAITUSRLBL
SS$_WASCLR
SS$_WASECC

SS$_WASSET
SSS_WRITLCK
5S$_WRONGACP

SYSTEM SYMBOLIC

Type
Severe

Severe
Severe
Warning
Success
Success

Success
Severe
Severe

DEFINITION MACROS

Meaning

Privileged vector 1limit of 42
exceeded

AST vector already enabled
Volume invalid

Waiting. for user labels
Previous state was clear
Successful transfer; no
check

Previous state was set
Write lock error

Wrong ACP for device

data

APPENDIX B

PROGRAM EXAMPLES

This appendix presents three VAX-11 MACRO programs: ORION, CYGNUS,
and LYRA, These programs do not perform any useful work; they are
intended only to illustrate how to call various system services.

Each program is preceded by an introduction identifying the services
it wuses and the main functions it performs. In addition, the program
themselves contain many comments related to specific data definitions
and portions of code.

To help you locate the system service calls 1inh the programs, the
macros are printed in red.

B.1 ORION PROGRAM EXAMPLE
The program ORION uses the following system services:

S$ASSIGN (Assign I/0 Channel)

SOUTPUT (form of Queue I/0 Request and Wait For Event Flag)
SNUMTIM (Convert Binary Time to Numeric Time)

$BINTIM (Convert ASCII String to Binary Time)

$SETIMR (Set Timer)

SWAITFR (Wait for Single Event Flaq)

SREADEF (Read Event Flags)

SSETPRN (Set Process Name)

This sample program illustrates:

1. Assigning an I/O channel to a terminal and writing messages
to the terminal. The device name is specified by the logical
name TERMINAL. Before ORION is run, the logical name must be
assigned an equivalence device name.

2, Using the S$NUMTIM system service to find out whether the
current time 1is before or after noon. A call to $SETIMR is
made conditionally if the time is prior to noon,

3. How to obtain a delta time value in the system format to use
as input to the Set Timer (SSETIMR) system service.

4. Calls to the Set Timer system service.

a. Event flag - The $SETIMR call is followed by a wait for
the specified event flag. When the timer expires, the
program calls SREADEF and displays the current status of
the event flag cluster.

PROGRAM EXAMPLES

b. AST routine - one AST routine 1is for a delta time
interval. The other (conditional) 1is for an absolute
time. In either case, the program continues execution
and will be interrupted when the timer requests are
processed.

5. An example of terminal input. The program prompts for a
character string to be wused as the process name of the
current process. Then it uses this name as input to the
SSETPRN system service.

.TITLE ORION SYSTEM SERVICES TEST
.IDENT /01/

; Macro library calls

SIODEF ;Define I/0 function codes
$SSDEF ;Define system status values
SREADEFDEF ;Define offsets for SREADEF

; Local macro defined in private macro library

MESSAGE ;Output messages formatted by FAO

~

.MACRO MESSAGE
SOUTPUT CHAN=TTCHAN ,BUFFER=FAOBUF ,LENGTH=FAOLEN
BSBW ERROR
« ENDM MESSAGE
; Read-only data program section

.PSECT RODATA ,NOWRT ,NOEXE

; Local Read/Write Data

TTNAME: .ASCID /TERMINAL/ ;Terminal logical name

; FAO control strings and data for timer (AST and event flag) tests

ASCNOON: .ASCID /-- 12:00:00.00/ :Noon in ASCII format
TENSEC: .ASCID /0 00:00:10/ ;Ten seconds delta time in ASCII format
DISPLAYEFN: ;Display cluster contents

.ASCID /CLUSTER 2 CONTENTS: !XL/

TIMSTR: ;Display message after event flag wait
.ASCID @!/TIMER ENTRY PROCESSED; CLUSTER 2 = IXL@

NOONMSG : :Display message at noon
.ASCIC /I'M YOUR TIME AST ROUTINE; IT'S NOON.../

SECMSGDESC: ;Display message from AST routine
.ASCID @!/TIME AST ROUTINE; DELTA TIME !3%T@

TWENTY: .LONG -10*1000*1000%*%20,-1 :20 seconds delta time

PROGRAM EXAMPLES

; Announcement messages

FAOSTR: ;Master control string
.ASCID @!/ORION: !AC @ ;Name, message

; Announcement messages and lengths for outputting

HELLO: WASCII /HELLO...MY NAME IS ORION.../

HELLOLEN:
. LONG HELLOLEN-HELLO

TIMERMSG:

.ASCII /BEGINNING TIMER TESTS.../
TIMERLEN:

. LONG TIMERLEN-TIMERMSG
EFNWAITMSG::

.ASCII /TIMER SET; WAIT TEN SECONDS/
EFNWAITLEN:

. LONG EFNWAITLEN-EFNWAITMSG
ASTWAITMSG:

.ASCII /TIMER SET; AST IN 20 SECONDS/
ASTWAITLEN:

.LONG ASTWAITLEN-ASTWAITMSG

; Prompt for terminal input

PROMPT: ,ASCII /ENTER 1-15 CHARACTER NAME FOR PROCESS:/
'PROMPTLEN:
. LONG PROMPTLEN-PROMPT

~

Error message control strings

ERRSTR formats error message if a system service fails
IOERRSTR formats error message if I/0 fails
BADASTSTR formats error message if error in AST routine

~e we wg

ERRSTR:
.ASCID @!/SYSTEM SERVICE ERROR AT APP. !XL RO=!XL@

IOERRSTR:
.ASCID @!/I/0 ERROR; IOSB !XW@

BADASTSTR:
.ASCID /BAD AST PARAMETER UL/

WAKEUP: .ASCII /AWAKENED.../
WAKEUPLEN: .LONG WAKEUPLEN-WAKEUP

Read/write data

~

.PSECT RWDATA,RD,WRT,NOEXE
; FAO control string and buffer for all announcement messages

FAODESC: :
. LONG 80 ;Descriptor for FAO output buffer
. LONG FAOBUF ;Address of buffer

PROGRAM EXAMPLES

FAOBUF: .BLKB 80 : FAO buffer
FAOLEN: .WORD 0 ;Length of final string, always
.WORD 0 ;Need longword for SOUTPUT

; Buffer to format messages from AST routine; a separate output buffer
; ensures that if the AST is delivered while another message is being
; written into the FAO output buffer, no data or message will be lost.

FASTDESC:
.LONG 80 ;Descriptor for FAO output buffer
. LONG FASTBUF

FASTBUF: .BLKB 80 ; FAO buffer

FASTLEN: .WORD O ;Length of final string, always
.WORD 0 ;Need longword for S$SOUTPUT

; Receive channel number assigned to terminal and I/0 status here

TTCHAN: .BLKW 1 ;Terminal channel
TTIOSB: :I0OSB for terminal input
.BLKW 1 ;Return status
TTLEN: .BLKW 1 ;Length of I/O
.BLKL 1 ;Device char

; Argument list for $NAME_G form of a system service call

READLST:
SREADEF EFN=32,STATE=EFNTEST

Buffer to obtain numeric values of components of time. Since
the only field of interest is the hours field, the remaining
fields in the buffer are not formatted.

~e wo o

TIMES: .BLKW 3 ;Year, month, day
HOURS: L BLKW 1 ;Current time in hours
.BLKW 3 ;Remainder of buffer

; Buffer for terminal input (will create input descriptor for
; SSETPRN system service)

NAMEDESC: ;Descriptor setup
. LONG 15 :Initial size of huffer
. LONG NAME ;Address of buffer

NAME : .BLKB 15 ;Name string here

;Fields for timer tests

NOON 3 .BLKQ 1 ;will contain 12:00 noon in system format
TEN: .BLKQ 1 ;Will contain 10 second delta time
EFNTEST:

. LONG 0 ;Receive status of event flags
EFNTEST2:

.LONG 0 ;Status after timer test

; Longword to save PC on entry to error handling subroutine

PROGRAM EXAMPLES

SAVEPC: .BLKL 1

; Code begins here,

.PSECT TIMER,EXE,NOWRT
.ENTRY ORION,"M<R2,R3,R4,R5,R6> ;Entry mask

Assign an I/0 channel to the device specified by the logical name
TERMINAL and issue a message indicating we're off and running.

Do not perform normal error checking here: instead, let the
command interpreter issue a message based on the status in RO

if the channel assignment fails.

e me we “e W

SETUP:

$ASSIGN_S DEVNAM=TTNAME ,CHAN=TTCHAN

BLBS R0,108 ;All okay, continue

RET ;Otherwise exit with status in RO
10$: $SOUTPUT CHAN=TTCHAN ,BUFFER=HELLO,LENGTH=HELLOLEN

BSBW ERROR

; Call Read Event Flags to get status of event flags before beginning
; tests and use FAO to output the contents of local event flag cluster 2

SREADEF_G READLST

$FAO_S ~CTRSTR=DISPLAYEFN,OUTBUF=FAODESC,OUTLEN=FAOLEN -
P1=EFNTEST

MESSAGE

; Announce start of timer tests

TIMETEST:
$OUTPUT CHAN=TTCHAN,BUFFER=TIMERMSG,LENGTH=TIMERLEN
BSBW ERROR

Call $NUMTIM to find out if it is currently AM or PM. If
the program is being run in the AM (any time), we'll call
$SETIMR to notify us via an AST when the time rolls over
to afternoon, If it's already PM, skip this setting of
the timer.

e we we wo we

$NUMTIM S TIMBUF=TIMES

BSBW ERROR
CMPW HOURS , #12 ;Before or afternoon?
BGEQ 108 ;After, skip setting timer

Fall through here: format ASCII string representing 12 noon
into system quadword time format and call $SETIMR with
the address of AST service routine to handle timer requests.

~e wo we

$BINTIM_S TIMBUF=ASCNOON,TIMADR=NOON ;Get binary noon time
BSBW ERROR sError check

$SETIMR_S DAYTIM=NOON,ASTADR=TIMEAST,REQIDT=#12
BSBW ERROR ;Error check

Now, get a delta time of 10 seconds formatted into a quadword

..

PROGRAM EXAMPLES

10S$: $BINTIM~S TIMBUF=TENSEC,TIMADR=TEN ;Get binary delta time
BSBW ERROR ;Error check
$SSETIMR_S EFN=#33,DAYTIM=TEN ;Set timer (ten seconds)
BSBW ERROR ;Error check

~ =

e Ne we

~e we e

~a we we

Announce wait for event flag and wait; then read the
event flag cluster and output its contents

SOUTPUT CHAN=TTCHAN ,BUFFER=EFNWAITMSG ,LENGTH=EFNWAITLEN
SWAITFR_S EFN=#33 ;Now wait
BSBW ERROR ;Error check

Update argument list for $READEF and then call it with new address
to write the cluster into. When complete, format a message and
display the contents of the cluster.

MOVAL EFNTEST2 ,READLST+READEFS STATE

$SREADEF_G READLST -

BSBW ERROR ;Error check

SFAO_S CTRSTR=TIMSTR,OUTLEN=FAOLEN,OUTBUF=FAODESC,~
P1=EFNTEST2

BSBW ERROR ;Error check

MESSAGE

Announce setting of timer with AST in 20 seconds (using
alternate method of coding delta time). Then, set timer
and continue.

SOUTPUT CHAN=TTCHAN ,BUFFER=ASTWAITMSG ,LENGTH=ASTWAITLEN

SSETIMR_S DAYTIM=TWENTY ,ASTADR=TIMEAST ,REQIDT=#20
BSBW ERROR ;Error check

Issue a prompt for terminal input: request a name for the current
process and then use the character string entered as the process
name.

RDNAME :
SOUTPUT CHAN=TTCHAN,BUFFER=PROMPT, LENGTH=PROMPTLEN
BSBW ERROR ;Error check
SINPUT CHAN=TTCHAN,BUFFER=NAME, LENGTH=NAMEDESC,-
IOSB=TTIOSB
BSBW ERROR
CMPW TTIOSB,#S5S$_NORMAL ;1/0 successful?
BEQL 108 ;Yes, go on
$FA0_S CTRSTR=IOERRSTR,OUTLEN=FAOLEN ,OUTBUF=FAODESC,~
P1=TTIOSB
MESSAGE
BRW RDNAME ;Go try again
108: MOVZWL TTLEN,NAMEDESC ;Update descriptor length
$SSETPRN_S PRCNAM=NAMEDESC ;Set process name
BSBW ERROR

~e ws e

Hibernate. When ORION is run interactively, the terminal is dormant.
When the AST for the Set Timer service is delivered, ORION
will awaken long enough to execute the AST service routine and

PROGRAM EXAMPLES

; then resume execution.

If ORION is run in a subprocess, wakeups can be scheduled for
delta time intervals. Each time it is awakened, ORION displays a
message and then resumes hibernating.

~ we we

HIB: SHIBER S ;For now
$OUTPUT CHAN=TTCHAN,BUFFER=WAKEUP,LENGTH=WAKEUPLEN
BRB HIB
RET

; AST routine to handle timer requests

TIMEAST:
«WORD 0 ;Entry mask for timer AST routine
CMPL #12,4 (AP) ;Is it noon AST?
BEQL 108 ;Yes, go do it
CMPL #20,4 (AP) ;Is it delta time AST?
BEQL 208 ;Yes, go do that
BRW 30$;Neither, issue error message

; Format message for noon AST

10$: $SFAO S CTRSTR=FAOSTR,0OUTBUF=FASTDESC,OUTLEN=FASTLEN,P1=#NOONMSG
BSBW ERROR ;Error check
$OUTPUT CHAN=TTCHAN,BUFFER=FASTBUF,LENGTH=FASTLEN
BSBW ERROR sError check
RET

; Format message for 20 second AST

20%: SFAO_S CTRSTR=SECMSGDESC,OUTBUF=FASTDESC,OUTLEN=FASTLEN,-
P1=#TWENTY
SOUTPUT CHAN=TTCHAN ,BUFFER=FASTBUF,LENGTH=FASTLEN
RET

; Format message if spurious AST

308: $FAO S CTRSTR=BADASTSTR,OUTLEN=FASTLEN,OUTBUF=FASTDESC,-
- P1=4 (AP)
$OUTPUT CHAN=TTCHAN,BUFFER=FASTBUF,LENGTH=FASTLEN
RET

Error handling routine: checks status code in RO,

If low bit set, returns to mainline routine. Otherwise,
displays approximate PC and RO when system service call
encounters an error and issues RET that causes image exit.

~e we we we

ERROR:
BLBC R0,10$ - 3I1f error, branch
RSB ;Otherwise, continue

; Use FAO to format output error message

10$: MOVL (SP) ,SAVEPC
$FAO_S CTRSTR=ERRSTR,OUTLEN=FAOLEN,OUTBUF=FAODESC,-
P1=SAVEPC,P2=R0
BLBC RO ,END
SOUTPUT CHAN=TTCHAN ,BUFFER=FAOBUF,LENGTH=FAOLEN
END: RET
« END ORION

B.2

PROGRAM EXAMPLES

CYGNUS PROGRAM EXAMPLE

The program CYGNUS uses the following system services:

STRNLOG - Translate Logical Name

$ASSIGN - Assign I/0 Channel

SDCLEXH - Declare Exit Handler

SCREMBX - Create Mailbox

SGETCHN - Get I/0 Channel Device Information
SCREPRC - Create Process

SFAO - Formatted ASCII Output
$QIO - Queue I/0 Request
$SCRELOG - Create Logical Name
SWAKE - Wake Process

SSETSFM - Set System Service Failure Exception Mode
SWAITFR - Wait for Single Event Flag

SDELLOG - Delete Logical Name

$DASSGN - Deassign I/0 Channel

This sample program illustrates:

L4

I

~

1.

Assigning a channel +to the current output device by
translating the logical name SYSSOUTPUT.

Declaring an exit handler to receive control at image exit.
The exit handler ensures that the image exits in a graceful
manner.

Creating a mailbox and using the S$SGETCHN system service to
obtain the unit number.

Creating a subprocess and using the mailbox created as a
termination mailbox. When the subprocess terminates, an AST
service routine interprets the message.

Placing names in the group logical name table.
Waking a hibernating subprocess. The subprocess created by
this program places 1itself in hibernation after getting

started. When awakened, it translates the 1logical names
placed in the group logical name table.

.IDENT /01/

System macro definitions required by CYGNUS

Local

$SSDEF ;Define status codes for returns

$IODEF ;Define I/0 functions codes for $0QI0
SMSGDEF ;Define names for mailbox messages

SPQLDEF ;Define names for quota list

$ACCDEF ;Define names for termination message
SDIBDEF ;Define names for device information buffer
macros:

MESSAGE, to output messages formatted by FAO

+MACRO MESSAGE
SOUTPUT CHAN=TTCHAN,BUFFER=FAOBUF,LENGTH=FAOLEN
BSBW ERROR

. ENDM MESSAGE

~e we wo

«MACRO

. ENDM

PROGRAM EXAMPLES

GRPNAME, to place logical name/equivalence name
pairs in the group logical name table with $CRELOG and
do error checking.

GRPNAME LOGICAL,EQUAL

$CRELOG_S TBLFLG=#1,LOGNAM=LOGICAL ,EQLNAM=EQUAL
BSBW ERROR

GRPNAME

; Read—-only data program section

.PSECT

RODATA ,NOWRT ,NOEXE

; Descriptor for input'logical name

OUTPUT: .ASCID /SYS$SOUTPUT/

; Buffers for announcement messages and lengths

HELLO: .ASCID /CYGNUS...HELLO/

HELLOLEN:
.LONG

BYE: «ASCII
BYELEN: .LONG

HELLOLEN-HELLO

/CYGNUS EXIT HANDLER.../
BYELEN-BYE

; Control strings for output messages formatted by FAO and associated
; counted ASCII strings to insert in messages

PRCSTR:
«ASCID

ASTERRSTR:
+«ASCID

IOERR: .ASCIC
IDERR: .ASCIC

PIDERRSTR:
+ASCID

DONESTR:
.ASCID

BADEXSTR:
.ASCID

/LYRA CREATED, PID !XL/ ;display PID of subprocess
Q! /MAILBOX MESSAGE HAS !AC (XW@

'I/0 ERROR' :I/0 error in AST routine

/BAD MSG ID/ :Mailbox message not termination message

@!/SPURIOUS PROCESS ID !XL IN DELETION MAILBOX@

@!/LYRA COMPLETED; STATUS !XL TIME !3T@

@!/EXIT DUE TO ERROR !XL@

; Descriptor to define name of image for subprocess to execute.

LYRAEXE:
.ASCID

/LYRA,.EXE/

; Quota list for subprocess: defines minimal quotas required for
; for the subprocess to execute and ensures that the creating
; image will have sufficient quotas to continue.

QLIST: .BYTE

PQLS_BYTLM ;Buffer quota

.LONG
.BYTE
.LONG
.BYTE
. LONG
.BYTE
. LONG
«BYTE
.LONG
.BYTE

PROGRAM EXAMPLES

1024

PQLS_ FILLM ;0pen file quota
gQLS_PGFLQUOTA ;Paging file quota
SSES_PRCLM ;Subprocess quota
éQL$~TQELM ;Timer queue quota
gQL$_LISTEND

: Logical name/equivalence name pairs for group table.
; Note that one of the names is recursive in the table.

ORION: .ASCID
HUNTER: .ASCID
PEGASUS: .ASCID
HORSE: .ASCID

LYRA: .ASCID
HARP: .ASCID
CYG: .ASCID
SWAN : .ASCID
DUCK: .ASCID
TALE: .ASCID

; Read/write d
.PSECT

TTCHAN: .BLKW

/ORION/
/HUNTER/
/PEGASUS/
/HORSE/

/LYRA/

/HARP/

/CYGNUS/

/SWAN/

/UGLY DUCKLING/
/FAIRY TALE!/

ata program section
RWDATA ,RD ,WRT ,NOEXE

1 ;Channel number of terminal

; Output buffer to receive physical terminal name

TTNAME: .LONG
TTADDR: .LONG
TT: .BLKB

; Termination

EXITBLOCK:
.BLKL
. LONG
. LONG
.LONG

ERRPC: .BLKL

STATUS: .BLKL

; Fields used

EXCHAN: .BLKW
EXITBUF:

. LONG

. LONG
BBUF: «BLKL
ENDBUF:
MBXIOSB:

«BLKW
MBLEN: .BLKW
MBPID: .BLKL

63 ;Descriptor length
TT ;Address of buffer
63 ;Maximum logical name length

control block

;Exit control block

1 ;System uses this for pointer
EXITRTN ;Address of routine

2 ;Number of arguments for handler
STATUS ;Address to store status

1 ;Store PC (if error)

1 ;Status code at exit

for termination mailbox creation, message buffering

1 ;Channel number of mailbox
;:Descriptor for channel data

ENDBUF-BBUF ;Length of buffer

BBUF ;Address of buffer

DIB$K_LENGTH

+1I/0 status block

;Status of I/0 completion
;:Length of operation here
:PID of process deleted

[P

EXITMSG:
+.BLKB

PROGRAM EXAMPLES

;Buffer for mailbox message

ACC$K_TERMLEN

; Receive PID of subprocess here

LYRAPID:
«BLKL

1

; Output buffers for strings formatted by FAO

FAODESC: ;Descriptor for output buffer
. LONG 80 :80-character buffer
. LONG FAOBUF ;Address

FAOBUF: .BLKB 80 ;Buffer

FAOLEN: .BLKW 1 ;Receive length here
.BLKW 1 ;Need longword for $QIO

; Need separate FAO buffers for use in AST routine to ensure
; that data doesn't get clobbered asynchronously

FASTDESC:
. LONG 80 ;Length
. LONG FASTBUF ;Address
FASTBUF: ,BLKB 80 ;Buffer

FASTLEN: .BLKW 1
« BLKW 1

;1Get length
;Need longword for $QIO

: Program code begins here.

.PSECT CODE,EXE,RD,NOWRT
CYGNUS::

.WORD 0 ;:Entry mask
First, translate logical name SYSSOUTPUT to find name of
current output device. If the image is run interactively,
its equivalence name is system-defined, and will contain
a 4-byte header, The program must check for the header and update
the descriptor so the device name will be valid for calling S$ASSIGN,

~e we we we we

$TRNLOG_S LOGNAM=OUTPUT ,RSLLEN=TTNAME ,RSLBUF=TTNAME

BSBW ERROR

CMPB TT,# " X1B ;:First byte escape?

BNEQ 108 ;:No, go ahead

SUBL #4 ,TTNAME ;Subtract 4 from length of name
ADDL #4 ,TTADDR ;Add 4 to address in descriptor

; Call SASSIGN to assign an I/0 channel and issue message verifying
; successful initialization

10$: $ASSIGN S DEVNAM=TTNAME,CHAN=TTCHAN

BSBW ERROR ;Error check

$OUTPUT CHAN=TTCHAN ,BUFFER=HELLO,LENGTH=HELLOLEN
BSBW ERROR

; Declare exit handler to do cleanup operations

PROGRAM EXAMPLES

$DCLEXH S DESBLK=EXITBLOCK
BSBW T ERROR

Create a mailbox for subprocess termination message, then
get the unit number of the mailbox by doing a $GETCHN

~e “e

MAILBOX:
$CREMBX S CHAN=EXCHAN,MAXMSG=#120,BUFQUO=#240,PROMSK=#0
BSBW ERROR
SGETCHN S CHAN=EXCHAN,PRIBUF=EXITBUF
BSBW ~ ERROR

Create the subprocess. Since the logical name SYSSOUTPUT

has already been translated, the same equivalence name can be
given to LYRA as its logical output device.

LYRA will be able to assign a channel to this device as well.
The MBXUNT argument specifies the name of the mailbox just
created; the mailbox will receive a message when LYRA exits.

~e Ne we we we we

PROCESS:
$CREPRC S IMAGE=LYRAEXE,PIDADR=LYRAPID,-
T MBXUNT=BBUF+DIBSW UNIT,-
OUTPUT=TTNAME ,QUOTA=QLIST
BSBW ERROR

If okay, format an output message showing the process id...

~

$FAO_S CTRSTR=PRCSTR,OUTLEN=FAOLEN,OUTBUF=FAODESC,-

P1=LYRAPID
BSBW ERROR
SOUTPUT CHAN=TTCHAN ,BUFFER=FAOBUF,LENGTH=FAOLEN
BSBW ERROR

Queue an I/0 request to the mailbox with an AST
to receive notification when LYRA completes.

~e ~e

$QI0 S EFN=#4,CHAN=EXCHAN,FUNC=#I0$_READVBLK,-
- ASTADR=EXITAST,I0OSB=MBXIOSB,-
P1=EXITMSG,P2=#ACC$K_TERMLEN
BSBW ERROR -

Place names in the group logical name table using the macro GRPNAME.
It will be LYRA's task, when awakened, to translate these

names and display the results at the terminal.

Note that translation of the name CYGNUS will require

recursive translation.

-~ we W N N

PUT_NAMES:
GRPNAME ORION,HUNTER

GRPNAME PEGASUS,HORSE
GRPNAME LYRA,HARP
GRPNAME CYG,SWAN
GRPNAME SWAN,DUCK

GRPNAME DUCK,TALE

PROGRAM EXAMPLES

After placing names in the table, wake LYRA, who has been hibernating,
to perform the logical name translation.

~ e

$WAKE_S PIDADR=LYRAPID
BSBW ERROR
RET ;All finished

AST service routine to read the termination mailbox.
In this example, only one message is actually expected in the mailbox
but the program performs all the following checks:

~ o we

1. That the I/0 completed successfully.
2. That the message in the mailbox is a process termination message.
3. That the process being deleted is the subprocess created.

~. we we

This service routine enables system service failure exception
mode as an error handling device: if a system service

call fails, an exception condition will occur. CYGNUS

does not declare a condition handler, so the image

will be forced to terminate, and the system will display
pertinent information about the exception condition.

~e we we we we we

EXITAST:
.WORD 0 ;Entry mask
$SETSFM_S ENBFLG=#1 ;Enable SSFAIL exceptions

; Check IOSB to ensure that I/0 completed successfully

CMPW MBXIOSB,#SS$_NORMAL ;Check that I/0 was successful
BEQL 208 ;Okay, go on
SFAO S CTRSTR=ASTERRSTR,- ;Otherwise, format error msg
- OUTLEN=FASTLEN ,OUTBUF=FASTDESC-
P1=4#I0ERR, - ;I/0 error
P2=MBXIOSB ;Display IOSB
SOUTPUT CHAN=TTCHAN,BUFFER=FASTBUF,LENGTH=FASTLEN
BRW 508 ;Return

; Check message type field in mailbox message to ensure that the message
; is a process termination message.

206: CMPW EXITMSG+ACCSW MSGTYP,#MSGSDELPROC ;Check message identification
BEQL 308 - ;O0kay, go on
SFA0O S CTRSTR=ASTERRSTR, - ;O0therwise, format error message
- OUTLEN=FASTLEN,QUTBUF=FASTDESC ,-
Pl=$IDERR, - ;Invalid PID error

P2=EXITMSG+ACCSW_MSGTYP ;Print message type code
SOUTPUT CHAN=TTCHAN ,BUFFER=FASTBUF,LENGTH=FASTLEN
BRW 50$;Return

Compare the second longword in the IOSB with the PID returned
by SCREPRC to ensure that the termination message is for LYRA.

.
’
.
’

30$: CMPL LYRAPID,MBPID ;LYRA deletion?
BNEQ 358 ;Yes, go on
BRW 408
35%:
SFAO_S CTRSTR=PIDERRSTR, - ;Otherwise, format error message

OUTLEN=FASTLEN,OUTBUF=FASTDESC,-

PROGRAM EXAMPLES

P1=MBPID ;Display spurious PID
SOUTPUT CHAN=TTCHAN ,BUFFER=FASTBUF, LENGTH=FASTLEN
BRW 508 ;sReturn

; Format an output message indicating LYRA's final exit status
; and the time of day at which LYRA terminated.

40$: $FAO_S CTRSTR=DONESTR, - ;Format message telling of LYRA's demise
OUTLEN=FASTLEN,OUTBUF=FASTDESC,-
Pl=EXITMSG+ACC$L_FINALSTS, - ;Get status code
P2=#EXITMSG+ACC$Q_TERMTIME ;and time of deletion
SOUTPUT CHAN=TTCHAN ,BUFFER=FASTBUF ,LENGTH=FASTLEN
50$: $SETSFM_S ENBFLG=#0 ;Disable exceptions
RET ;Return

; This is the exit handler for CYGNUS. It receives control
; when CYGNUS exits, either normally, or as a result of
; an error condition.

EXITRTN:
.WORD 0 ;Entry mask
SOUTPUT CHAN=TTCHAN,BUFFER=BYE, LENGTH=BYELEN
BSBW ERROR
BLBS STATUS, 208 ;Normal exit, continue

If error, format error message using argument list in
exit control block

e =~

10$: $FAO_S CTRSTR=BADEXSTR,OUTLEN=FAOLEN,OUTBUF=FAODESC,-
P1=STATUS ,P2=ERRPC
BSBW ERROR
$OUTPUT CHAN=TTCHAN,BUFFER=FAOBUF,LENGTH=FAOLEN

; Common code for both normal and error exit:-wait for subprocess
; to terminate (if it hasn't already), then delete all names
; from the group logical name table.

208: SWAITFR S EFN=#4 ;Wait for termination message
BSBW “ERROR

305: SDELLOG S TBLFLG=#1l ;Delete all names
BSBW ERROR
SDASSGN S CHAN=EXCHAN ;Deassign mailbox channel
BSBW ERROR
MOVL STATUS ,RO ;Restore saved status code
RET ;Exit with status

Common error handling routine. This routine checks the
status code in RO; if success, returns to mainline of
program. If there is an error, the PC is placed in the exit
control block :so that exit routine can format and display
an error message.

~ wo Ne N e

ERROR:
BLBC R0 ,108 ;Check status code
RSB ;Low -bit set, go back
108 MOVL (SP) ,ERRPC ;Store PC
RET ;RET will cause image exit

.END CYGNUS

PROGRAM EXAMPLES

B.3 LYRA PROGRAM EXAMPLE

The program LYRA uses the following system services:

STRNLOG - Translate Logical Name

S$ASSIGN - Assign I/0 Channel

SHIBER - Hibernate

SFAOL - Formatted ASCII Output with List Parameter

LYRA is the subprocess created by CYGNUS. After assigning a channel
to its current output device, LYRA hibernates. When awakened by
CYGNUS, LYRA translates the logical names placed in the group logical
name table by CYGNUS, and displays the results of the translations on
the terminal,

When LYRA exits, a
specified by CYGNUS.

termination message is sent to the mailbox

.IDENT /01/

call

~e

Macro library

$SSDEF ;Define system status values

Local macro

-

;7 MESSAGE, to output messages formatted by FAO
.MACRO MESSAGE
SouTpUT CHAN=TTCHAN ,BUFFER=FAOBUF, LENGTH=FAOLEN
BSBW ERROR
. ENDM MESSAGE
; Local data program section starts here

.PSECT RODATA,NOWRT,NOEXE

; Logical name

OUTPUT: .ASCID

; Announcement

HELLO: .ASCII
HELLOLEN:
. LONG

WAKEMSG :
.ASCII
WAKELEN:
. LONG

; FAO control string for logical

LOGNAMSTR:
.ASCID

of logical output device

/SYS$SOUTPUT/

messages
/LYRA: INITIALIZING...AND SO TO SLEEP/

HELLOLEN-HELLO

/LYRA: OKAY, WILL DO LOGICAL NAME TRANSLATION,../

WAKELEN-WAKEMSG

name output message

@!/LYRA: !AS IS A !AS@

PROGRAM EXAMPLES

; Error message control string
ERRSTR:

.ASCID @!/LYRA: SYSTEM SERVICE ERROR AT APP. !XL RO=!XL@
: Logical names to be translated

ORIONLOG:
.ASCID /ORION/

CYGNUSLOG:
.ASCID /CYGNUS/

LYRALOG:
.ASCID /LYRA/

PEGASUSLOG:
.ASCID /PEGASUS/

; Read/write data program section starts here

.PSECT RWDATA,RD,WRT,NOEXE

; Output buffer for all output formatted by FAO

FAOLEN: ,WORD 0 ;Length of final string, always
.WORD 0 ;Need longword for $SOUTPUT
FAODESC:
. LONG 80

. LONG FAOBUF
FAOBUF: .BLKB 80

: Word to receive channel number of terminal

OUTCHAN: .BLKW 1

; Buffers to maintain logical name/equivalence name pairs
; in routine that performs logical name translation

LOGBUFA:
. LONG 63
. LONG BUFA
BUFA: .BLKB 63
LOGBUFB:
. LONG 63
. LONG BUFB
BUFB: .BLKB 63
LOGLEN: .LONG 0 ;Save length of equivalence name

; Parameter list for call to FAOL (used by translate routine)

TLIST:
TLOGNAM:

.LONG 0 ;Address of logical name descriptor
TEQLNAM:

.LONG 0 :Address of equivalence descriptor

PROGRAM EXAMPLES

SAVER3: .LONG 0 ;Save register contents for switch

Longword to store the PC when a system service call results in an
error. LYRA checks the low bit of RO following each service call.
If set, LYRA continues; otherwise, it saves the PC and branches
to an error handling routine that displays the saved PC and the
contents of RO.

~e we we we o

ERRPC: .LONG 0 ;For address of SSFAIL

; Code begins here.

.PSECT CODE,EXE,RD,NOWRT
.ENABL LSB
LYRA::
+WORD “M<R2,R3,R4,R5,R6> ;Entry mask

; Assign channel to device referred to by logical name
; SYSSOUTPUT. This name was placed in the logical name
; table by CYGNUS (it is also CYGNUS's logical output device).

20S: SASSIGN S DEVNAM=QUTPUT,CHAN=0OUTCHAN

BLBS T~ R0,30$

RET ;Exit with status if ASSIGN fails
308: SOUTPUT CHAN=OUTCHAN,BUFFER=HELLO,LENGTH=HELLOLEN

BLBS RO, 408
MOVAL 30$,ERRPC

BRW ERROR
408 : SHIBER S
BLBS ~ RO,50$
MOVAL 40$,ERRPC
BRW ERROR
50$: SOUTPUT CHAN=OUTCHAN,BUFFER=WAKEMSG ,LENGTH=WAKELEN
BLBS R0O,60$
MOVAL 50$,ERRPC
BRW ERROR

608$:

When awakened, begin translating logical names. To translate the
names, place address of a logical name descriptor in R2 and then
go to the subroutine that performs the translation. Repeat for
each logical name to translate.

~e wo w5 we

MOVAL ORIONLOG ,R2

JSB TRANSLATE
MOVAL CYGNUSLOG ,R2
JSB TRANSLATE
MOVAL LYRALOG ,R2
JSB TRANSLATE
MOVAL PEGASUSLOG ,R2
JSB TRANSLATE

: All finished, return

RET

.ENABL LSB
; Subroutine to translate and print logical names:

PROGRAM EXAMPLES

On entry to this subroutine,

R2 = address of logical name to translate

It uses: R3 to hold address of final result huffer
R4 to hold address of intermediate buffer

EYRETRE PR

TRANSLATE:
MOVAL LOGBUFA ,R3 ;Get addresses of buffers
MOVAL LOGBUFB,R4

Initial translation places resultant equivalence name in buffer pointed
to by R3

~ ~e

108$: $TRNLOG_S LOGNAM=(R2) ,RSLLEN=LOGLEN,RSLBUF=(R3)
BLBS R0O,308
MOVAL 10$,ERRPC
BRW ERROR

Place length of equivalence name in first word of descriptor and use this
descriptor as input for next translation. If SS$_NOTRAN is returned,

then there was no recursion of name. If not, update registers to

provide input and output descriptors for translation and repeat
translation until SS$ NOTRAN is returned.

s we ws we we

308 MOVZWL LOGLEN, (R3) ;Fix length in buffer
STRNLOG_S LOGNAM=(R3) ,RSLLEN=LOGLEN,RSLBUF=(R4)
BLBS RO ,408
MOVAL 308 ,ERRPC
BRW ERROR

408 CMPW RO, #SS$ NOTRAN ;Final?
BEQL 50% - ;Yes, go print
MOVL R3,SAVER3 ;Otherwise, switch
MOVL R4 ,R3
MOVL SAVER3,R4
MOVZWL #63, (R4) ;Restore length
BRB 30% ;Try again

; Place addresses of logical name and equivalence names in FAQ parameter list
; and call FAO to format output message, then output the message.

50$: MOVL R2, TLOGNAM
MOVL R3,TEQLNAM
$FAOL_S CTRSTR=LOGNAMSTR,OUTLEN=FAOLEN,OUTBUF=FAODESC,-
PRMLST=TLIST
BLBS RO,60%
MOVAL 50$,ERRPC

BRW ERROR
60S: $OUTPUT CHAN=OUTCHAN,BUFFER=FAOBUF,LENGTH=FAOLEN
BLBS RO ,70$
MOVAL 60S$,ERRPC
BRW ERROR
708 MOVL #63 ,LOGBUFA
MOVL #63,LOGBUFB
RSB ;To main routine

; Error-handling routine:
; This routine uses the saved PC and RO to format a message describing
; the conditions under which a call to a system service failed.

ERROR:

PROGRAM EXAMPLES

SFAO S CTRSTR=ERRSTR,OUTBUF=FAODESC,OUTLEN=FAOLEN,-
- P1=ERRPC,P2=R0

SouTpPUT CHAN=OUTCHAN,BUFFER=FAOBUF,LENGTH=FAOLEN

RET

. END LYRA

APPENDIX C

QUICK REFERENCE SUMMARY OF SYSTEM SERVICES

C.1 VAX-11 MACRO FORMS

C.l1.1 $name_G Form
Format
$name_G label

label

Address of argument list; argument 1list may be created
$name macro form.

$name Macro Format
label: $name argl ,... ,argn
label
Symbolic address of the generated argument list.
name
Macro name.
argl—-argn

Arguments to be placed in successive longwords in the argu
list. A longword of =zeros is generated for a nonspeci

with

ment
fied

argument. Arguments can be specified (1) in positional order,
with commas indicating no specified arguments; or (2) using

keyword = argument. If keywords are used, arguments can
specified in any order.

Argument List Offset Names

be

The $name macro automatically defines symbolic names for argument

list of offsets. The offset names can also be defined with
$name DEF. The symbolic names defined are:

the

QUICK REFERENCE SUMMARY OF SYSTEM SERVICES

name$_NARGS
Number of arguments in list.
name$_ keyword

Symbolic name for offset of each argument in list.

C.1.2 S$name_S Form
Format
$name_S argl ,... ,argn
argl - argn
Arguments for macro instruction.
Arguments can be specified (1) in positional order, with commas

indicating nonspecified arguments, or (2) using keyword=argument.
If keywords are used, arguments can be specified in any order.

QUICK REFERENCE SUMMARY OF SYSTEM SERVICES

C.2 SYSTEM SERVICE MACROS
Adjust Outer Mode Stack ‘Pointer
$SADJSTK [acmode] ,[adjust] ,newadr

acmode = access mode for which to adjust stack pointer

adjust 16~bit signed adjustment value

newadr address of longword to store updated value

Adjust Working Set Limit

SADJWSL [pagcnt] , [wsetlm]

pagcnt = number of pages to add to working set (if positive).
Number of pages to subtract £from working set (if
negative).

wsetlm = address of longword to receive new working set limit,

or current working set limit if pagcnt not specified.

Allocate Device
$ALLOC devnam ,[phylen] ,[phybuf] ,[acmode]

devnam = address of device name or 1logical name string
descriptor

phylen = address of word to receive length of physical name
phybuf = address of physical name buffer descriptor

acmode = access mode associated with allocated device

Associate Common Event Flag Cluster

SASCEFC efn ,name ,[prot] ,[perm]

efn = number of any event flag in the cluster with which to
associate

name = address of the text name string descriptor

prot = protection indicator for the cluster
0 -> default, any process in group
1 -> only owner's UIC

perm = permanent indicator

0 -> temporary cluster
1 -> permanent cluster

QUICK REFERENCE SUMMARY OF SYSTEM SERVICES

Convert Binary Time to ASCII String

SASCTIM

timlen

timbuf =

timadr

cvtflg

[timlen] ,timbuf ,[timadr] ,[cvtflg]

address of a word to receive the number of characters
inserted into the output buffer.

address of a quadword descriptor describing the
buffer to receive the converted time.

address of the quadword containing the 64-bit time to
be converted to ASCII. If 0, use current time.

conversion indicator
0 -=> return full date and time
1 -> return converted time only

Assign I/0 Channel

$ASSIGN

devnam

chan =

acmode

mbxnam

devnam ,chan , [acmode] , [mbxnam]

address of device name or logical name string
descriptor

address of word to receive channel number assigned
access mode associated with channel

address of mailbox logical name string descriptor, if
mailbox associated with device

Convert ASCII String to Binary Time

SBINTIM

timbuf

timadr

Absolute

timbuf ,timadr
address of string descriptor for ASCII time string

address of quadword to receive 64-bit binary time
value

time strings are specified in the format:

dd-mmm-yyyy hh:mm:ss.cc

Delta time strings are specified in the format:

Broadcast
$BRDCST
msgbuf

devnam

dddd hh:mm:ss.cc

msgbuf , [devnam]

= address of message buffer string descriptor

terminal device name string descriptor. If 0, send
message to all terminals. If first word in
descriptor is 0, send message to all allocated
terminals.

QUICK REFERENCE SUMMARY OF SYSTEM SERVICES

Cancel I/0 on Channel
SCANCEL chan

chan = number of the channel on which I/0 is to be canceled

Cancel Exit Handler
SCANEXH [desblk]
desblk = address of exit control block describing exit handler
to be deleted. 1If 0, delete all.
Cancel Timer Request

$CANTIM [reqidt] ,[acmode]

reqidt = request identification for request to be canceled.
If 0, all requests canceled.
acmode = access mode of requests to be canceled

Cancel Wakeup

$CANWAK [pidadr] ,[prcnam]

pidadr = address of ©process identification of process for
which wakeups are to be canceled
prcnam = address of process name string descriptor

Clear Event Flag
$CLREF efn

efn = number of event flag to be cleared

Change to Executive Mode

SCMEXEC routin ,farglst]

routin = address of the routine to be executed in executive
mode
arglst = address of argument 1list to be supplied to the

routine

Change to Kernel Mode
SCMKRNL routin ,[arglst]

address of routine to be executed in kernel mode

routin

arglst address of argument list to be supplied to routine

QUICK REFERENCE SUMMARY OF SYSTEM SERVICES

Contract Program/Control Region

SCNTREG
pagcnt

retadr

acmode

region

[}

[t}

pagcnt , [retadr] ,[acmode] ,[region]
number of pages to be deleted from end of region

address of 2-longword array to receive virtual
addresses of starting and ending page of deleted area

access mode for which service is performed
region indicator

0 -> program (P0O) region
1 -> control (Pl) region

Create Logical Name

SCRELOG

tblflg

lognam
eglnam

acmode

[t}

[}

[tblflg] ,lognam ,eglnam , [acmode]
logical name table number

0 -> system (default)

1 -> group table

2 => process table

address of logical name string descriptor

address of equivalence name string descriptor

access mode for logical name (process table only)

Create Mailbox and Assign Channel

SCREMBX [prmflg] ,chan ,[maxmsg] ,[bufquo] ,[promsk] ,[acmode]

prmflg

chan
maxmsg

bufquo

promsk
acmode

lognam

, [lognam]

permanent flag

0 -> temporary mailbox (default)

1 -> permanent mailbox

address of word to receive channel assigned

maximum message size that may be received by mailbox

number of bytes of dynamic memory that can be used to
buffer mailbox messages

protection mask for mailbox
access mode of created mailbox

address of logical name string descriptor for mailbox

QUICK REFERENCE SUMMARY OF SYSTEM SERVICES

Create Process

$CREPRC

pidadr

image

input

output

error

prvadr
quota
prcnam

baspri
uic
mbxunt

stsflg

[pidadr] , [image] , [input] , [output]
, [error] s [prvadr] , [quotal , [prcnam]
, [baspri] ,([uic] ,[mbxunt] ,[stsflg]

address of 1longword in which to return process
identification of created process

address of string descriptor for image name

address of string descriptor for SYSSINPUT logical
name

address of string descriptor for SYSSOUTPUT logical
name

address of string descriptor for SYSSERROR 1logical
name

address of quadword privilege list
address of quota list
address of string descriptor for process name

base priority (0-31) to set for new process (macro
default = 2)

user identification code. 1If 0, create a subprocess
mailbox unit for termination message
status and mode flag bits

Bit Meaning

disable resource wait mode

enable system service failure exception mode
inhibit process swapping

disable accounting messages

batch process

cause created process to hibernate

allow login without authorization file check
process is a network connect object

NS wN O

Create Virtual Address Space

SCRETVA

inadr

retadr

acmode

inadr ,[retadr] ,[acmode]

address of 2-longword array containing starting and
ending virtual address of pages to be created

address of a 2-longword array to receive starting and
ending virtual address of pages actually created

access mode for the new pages (protection is
read/write for acmode and more privileged modes)

QUICK REFERENCE SUMMARY OF SYSTEM SERVICES

Create and Map Section

SCRMPSC [inadr] ,[retadr} , [acmode] , [flags] , [gsdnam]
»[ident] ,([relpag]l ,[chan] ,[pagcnt] ,[vbn] ,[prot]

¢ [pfc]
inadr = address of 2-longword array containing starting and
ending virtual addresses of space into which section
is to be mapped
retadr = address of 2-longword array to receive addresses
actually mapped
acmode = access mode of owner of pages
flags = section characteristics
Flag Meaning
SECSM_GBL Global section
SEC$M_CRF Copy-on-reference pages
SECSM_DZRO Demand zero pages
SECSM_EXPREG Find first available space
SECSM_PERM Permanent section
SECSM_PFNMAP Page frame section
SECSM_SYSGBL System global section
SECSM_WRT Read/write section
gsdnam = address of global section name string descriptor
ident = address of quadword containing version identification
and match control
relpag = relative page number within section to begin mapping
chan = number of channel on which file is accessed
pagcnt = number of pages in section
vbn = virtual block number of beginning of section or
physical page frame number of beginning of section
prot = protection mask
pfc = page fault cluster size

Disassociate Common Event Flag Cluster
$DACEFC efn
efn = number of any event flag in the cluster to be
disassociated
Deallocate Device
SDALLOC [devnam] , [acmode])

devnam = address of device name string descriptor. If o0,
deallocate all devices.

acmode = access mode associated with device

QUICK REFERENCE SUMMARY OF SYSTEM SERVICES

Deassign I/0 Channel
$DASSGN chan

chan = number of channel to be deassigned

Declare AST

$DCLAST astadr ,[astprm] ,[acmode]

astadr = address of entry mask of AST routine
astprm = value to be passed to AST routine as an argument
acmode = access mode for which the AST is to be declared

Declare Change Mode or Compatibility Mode Handler

$DCLCMH addres ,[prvhnd] ,[type]

addres = address of change mode or compatibility mode handler

prvhnd = address of longword to receive previous handler
address

type = handler type indicator

0 -> change mode handler for current mode
1 -> compatibility mode handler

Declare Exit Handler
SDCLEXH desblk
desblk = address of exit control block containing:

31 8 7 0

forward link

exit handler address

address to store reason for exit

additional arguments JL
~ for exit handler,
if any

QUICK REFERENCE SUMMARY OF SYSTEM SERVICES

Delete Logical Name

SDELLOG [tblflg] ,[lognam] , [acmode]

tblflg = logical name table number
0 -> system
1 -> group
2 -> process
lognam = address of logical name string descriptor. If 0,
delete all names in the specified table.
acmode = access mode of logical name (process table only)

Delete Mailbox
SDELMBX chan

chan = channel number assigned to the mailbox

Delete Process

S$DELPRC [pidadr] ,[prcnam]

pidadr = address of longword containing process identification
of process to be deleted
prcnam = address of string descriptor for process name of

process to be deleted.

Delete Virtual Address Space

SDELTVA inadr ,[retadr] ,[acmode]

inadr = address of 2-longword array containing starting and
ending virtual addresses of pages to delete

retadr = address of 2-longword array to receive starting and
ending addresses of pages actually deleted

acmode = access mode for which service is performed

Delete Global Section

$DGBLSC [flags] ,gsdnam ,[ident]

flags = type of section

0 -> group global section

SECSM_SYSGBL -> system global section
gsdnam = address of global section name string descriptor
ident = address of quadword containing version identification

and match control

Delete Common Event Flag Cluster
$DLCEFC name

name = address of text name string descriptor of permanent
cluster

c-10

QUICK REFERENCE SUMMARY OF SYSTEM SERVICES

Exit
SEXIT

code

Expand Program/Control Region

SEXPREG
pagcnt

retadr

acmode

region

[code]

longword to be saved in process header as completion
status of current image (macro default = 1)

pagcnt , [retadr] ,[acmode] ,[region]

number of pages to add to end of specified region
address of 2-longword array to receive virtual
addresses of starting and ending pages of expanded
region

access mode of the new pages

region indicator

0 -> expand program (P0) region
1 -> expand program (Pl) region

Formatted ASCII Output

$FAO
ctrstr

outlen

outbuf

pl...

]

ctrstr ,[outlen] ,outbuf ,[pl] ,(p2]...[pn]
address of string descriptor for ASCII control string

address of word in which to store output string
length

address of output buffer string descriptor

variable number of arguments to FAO

Formatted ASCII Output With List Parameter

$FAOL

ctrstr
outlen
outbuf

prmlst

Force Exit
$FORCEX

pidadr

prcnam

code

ctrstr , [outlen] ,outbuf ,prmlst

address of string descriptor for control string
address of word to receive output string length
address of output buffer string descriptor

address of a list of longword parameters

[pidadr] , [prcnam] , [codel

address of process identification of process to be
forced to exit

address of process name string descriptor for forced
process

longword completion status for Exit service

QUICK REFERENCE SUMMARY OF SYSTEM SERVICES

Get I/0 Channel Information

$GETCHN
chan
prilen
pribuf
scdlen

scdbuf

chan , [prilen] ,I[pribufl ,[scdlen] ,[scdbuf]

number of a channel assigned to the device

address of word to receive length of primary buffer
address of primary buffer descriptor

address of word to receive length of secondary buffer

address of secondary buffer descriptor

Get I/0 Device Information

SGETDEV

devnam

prilen
pribuf
scdlen

scdbuf

1]

devnam ,[prilen] ,[pribuf] ,[scdlen] ,[scdbuf]

address of device name or logical name string
descriptor

address of word to receive length of primary buffer
address of primary buffer descriptor
address of word to receive length of secondary buffer

address of secondary buffer descriptor

Get Job/Process Information

$GETJPI

efn

pidadr
prcnam
itmlst
iosb

astadr

astprm

Get Message
$GETMSG
msgid

msglen

bufadr

[efn] ,[pidadr] ,([prcnam] ,itmlst ,[iosb], [astadr],
[astprm]

event flag number of flag to be set at request
completion

address of process identification

address of process name string descriptor
address of a list of item descriptors
address of a quadword I/0 status block
address of entry mask of AST routine

value to be passed to AST routine as an argument

msgid ,msglen ,bufadr ,[flags] ,[outadr]
identification of message to be retrieved

address of a word to receive 1length of string
returned

address of buffer descriptor of buffer to receive
string

QUICK REFERENCE SUMMARY OF SYSTEM SERVICES

flags = flag bits for message content (macro default = 15)
Bit Value Meaning
0 1 Include text
0 Do not include text
1 1 Include identifier
0 Do not include identifier
2 1 Include severity
0 Do not include severity
3 1 Include component
0 Do not include component
outadr = address of 4-byte array to receive the following
values:
Byte Contents
0 Reserved
1 Count of FAO arguments
2 User value
3 Reserved

Get Time
SGETTIM timadr

timadr = address of a quadword to receive 64-bit current time
value

Hibernate

$HIBER_S

SINPUT Macro

SINPUT chan ,length ,buffer ,[iosb] ,[efn]

chan = number of the channel on which I/0 is to be performed
length = length of the input buffer

buffer = address of the input buffer

iosb = address of quadword I/O status block

efn = event flag to set on completion (default = 0)

Lock Pages in Memory

SLCKPAG inadr ,[retadr] ,[acmode]

inadr = address of 2-longword array containing starting and
ending addresses of pages to be locked

retadr = address of 2-longword array to receive addresses of
pages actually locked

acmode = access mode to check against the owner of the pages

QUICK REFERENCE SUMMARY OF SYSTEM SERVICES

Lock Pages in Working Set

SLKWSET

inadr

retadr

acmode

inadr ,[retadr] ,[acmode]

address of 2-longword array containing starting and
ending virtual addresses of pages to be locked

address of a 2-longword array to receive starting and
ending virtual addresses of pages actually locked

access mode to be checked against the page owner

Map Global Section

Convert

$MGBLSC

inadr

retadr

acmode

flags

gsdnam

ident

relpag

fl

inadr ,[retadr] ,[acmode] ,[flags] ,gsdnam ,[ident]
¢ [relpag]

address of 2-longword array containing starting and
ending addresses of pages to be mapped

address of 2-longword array to receive virtual
addresses of pages mapped

access mode of owner of mapped pages

flags overriding default section characteristics
Flag Meaning

SECSM_WRT Read/write section

SECSM_SYSGBL System global section
SEC$M_EXPREG Find first available space

address of global section name descriptor

address of quadword containing version identification
and match control

relative page number within global section

Binary Time to Numeric Time

SNUMTIM timbuf ,[timadr]
timbuf = address of a 7-word buffer to receive numeric time
information
timadr = address of a quadword containing the 6A4-bit time. If
0, use current time
Buffer format:
31 16 15 » 0
month of year year since 0
hour of day day of month
second of minute minute of hour
hundredths of second

QUICK REFERENCE SUMMARY OF SYSTEM SERVICES

SOUTPUT Macro

$OUTPUT chan, length, buffer, [iosb], [efn]

chan = channel on which I/0 is directed

length = length of the output buffer

buffer = address of the output buffer

iosb = address of quadword I/O status block

efn = event flag number to set on completion (default = 0)

Purge Working Set
$PURGWS inadr

inadr = address of 2-longword array containing starting and
ending addresses of pages to be removed

Put Message
$PUTMSG msgvec ,[actrtn] ,[facnam]

msgvec = address of message argument vector

actrtn address of entry mask of action routine

facnam address of facility name string descriptor

Queue I/0 Request

$QIO [efn] ,chan ,func ,[iosb] ,[astadr] ,[astprm]
$QIOw ,[pll ,[p21 ,[p3] ,[p4]1 ,[pP5] ,I[p6]

efn = number of event flag to set on completion

chan = number of channel on which I/0 is directed

func = function code specifying action to be performed

iosb = address of quadword I/O status block to receive final
completion status information

astadr = address of entry mask of AST routine

astprm = value to be passed to AST routine as argument

pl... = optional device- énd function-specific parameters

Queue I/0 Request and Wait for Event Flag

See QIO for argument description

QUICK REFERENCE SUMMARY OF SYSTEM SERVICES

Read Event Flag

SREADEF efn ,sState

efn = event flag number of any flag in the cluster to be
read
state = address of a longword to receive current state of all

flags in the cluster
Resume Process

SRESUME [pidadr] , [prcnam]

pidadr = address of process identification of process whose
execution is to be resumed
prcnam = address of name string descriptor of process whose

execution is to be resumed
Schedule Wakeup

$SCHDWK [pidadr] ,([prcnam] ,daytim ,[reptim]

pidadr address of process identification of process to be

awakened

prcnam = address of name string descriptor of process to be
awakened

daytim = address of quadword containing time to wake
reptim = address of quadword containing repeat time interval
Set AST Enable
SSETAST enbflg
enbflg = AST enable indicator
0 -> disable ASTs for caller at current access mode
1 -> enable ASTs for caller at current access mode
Set Event Flag
$SETEF efn
efn = event flag number of flag to set

Set Exception Vector

SSETEXV [vector] ,[addres] ,[acmode] ,[prvhnd]

vector = vector number
0 -> modify primary vector
1 -> modify secondary vector
2 -> modify last chance vector
addres = exception handler address (0 indicates deassign
vector)
acmode = access mode for which vector is set
prvhnd = address of 1longword to receive previous handler

address

QUICK REFERENCE SUMMARY OF SYSTEM SERVICES

Set System Time

SSETIME [timadr]

timadr =

Set Timer
$SSETIMR

efn =

daytim

astadr

reqidt

address of quadword containing new system time in
64-bit format. If 0, recalibrate system time using
hardware time-of-year clock.

[efn] ,daytim ,[astadr] ,[reqidt]

event flag to set when timer expires

address of quadword containing 64-bit time value
address of entry mask of AST routine

request identification of this timer request

Set Power Recovery AST

$SETPRA

astadr

acmode

Set Priority

$SETPRI

[t}

pidadr

prcnam

pri =

prvpri

Set Process Name
SSETPRN

prcnam =

astadr , [acmode]
address of power recovery AST routine

access mode of AST

[pidadr] ,[prcnam] ,pri ,[prvpril

address of process identification of ©process whose
priority is to be set

address of name string descriptor of process whose
priority is to be set

new base priority for the process (0 - 15 are
timesharing; 16 - 31 are real-time)

address of longword to receive previous base priority

[prcnam]

address of the process name string descriptor

QUICK REFERENCE SUMMARY OF SYSTEM SERVICES

Set Protection on Pages

$SETPRT 1inadr ,[retadr] ,[acmode] ,prot ,[prvprt]

inadr = address of 2-longword array containing starting and
ending virtual addresses of pages for which to change
protection ‘

retadr = address of 2-longword array to receive starting and
ending addresses of pages that had their protection
changed

acmode = access mode of request

prot = new protection

prvprt = address of byte to receive previous protection of

last page changed

Set Privileges

SSETPRV [enbflg] ,[prvadr] ,I[prmflg] ,[prvprv]

enbflg = enable indicator
0 -> disable specified privileges
1 -> enable specified privileges
prvadr = 64-bit mask defining the privileges to be enabled or
disabled
prmflg = permanent indicator
0 -> enable or disable temporarily
1 -> enable or disable permanently
prvprv = address of quadword buffer to receive previous

privilege mask

Set Resource Wait Mode
$SETRWM [watflg)

watflg = wait indicator
0 -> wait for resources
1 -> return failure status immediately

Set System Service Failure Mode
SSETSFM [enbflg]

enbflg = enable indicator
0 -> disable generation of exceptions on
system service failures
1 -> generate exceptions for system service
failures

QUICK REFERENCE SUMMARY OF SYSTEM SERVICES

Set Process Swap Mode
$SETSWM [swpflg]
swpflg = swap indicator
0 -> enable swapping
1 -> disable swapping (lock in balance set)

Send Message to Accounting Manager

$SNDACC msgbuf , [chan]

msgbuf address of message buffer string descriptor

chan = number of channel assigned to mailbox to receive
reply
Send Message to Error Logger
$SNDERR msgbuf

msgbuf = address of message buffer string descriptor

Send Message to Operator
$SNDOPR msgbuf , [chan]

msgbuf = address of message buffer string descriptor

chan number of channel assigned to mailbox to receive

reply

Send Message to Symbiont Manager

$SNDSMB msgbuf , [chan]

msgbuf address of message buffer string descriptor

chan number of channel assigned to mailbox to receive

reply

Suspend Process

$SUSPND [pidadr] , [prcnam]

pidadr = address of process identification of process to be
suspended
prcnam = address of name string descriptor of process to be

suspended

QUICK REFERENCE SUMMARY OF SYSTEM SERVICES

Translate Logical Name

$TRNLOG
lognam

rsllen

rslbuf

table

acmode

dsbmsk

[}

lognam ,[rsllen] ,rslbuf ,[table] ,[acmode] ,[dsbmsk]
address of logical name string descriptor

address of word to receive length of resultant name
string

address of descriptor pointng to buffer to hold
result string (equivalence name)

address of byte to receive logical name table number

address of byte to receive access mode of entry
(process table only)

table search disable mask
Bit Set Meaning
Do not search system table

0
1 Do not search group table
2 Do not search process table

Unlock Pages From Memory

SULKPAG

inadr

retadr

acmode

[}

inadr ,(retadr] ,[acmode]

address of 2-longword array containing starting and
ending virtual addresses of pages to be unlocked

address of a 2-longword array to receive starting and
ending virtual addresses of pages actually unlocked

access mode to check against the owner of the pages

Unlock Pages From Working Set

SULWSET

inadr

retadr

acmode

inadr ,[retadr] ,[acmode]

address of 2-longword array containing starting and
ending virtual addresses of pages to be unlocked

address of a 2-longword array to receive starting and
ending virtual addresses of pages actually unlocked

access mode to check against the owner of the pages

Unwind Call Stack

SUNWIND

depadr

newpc

[depadr] , [newpc]

address of longword containing number of logical
frames (depth) to unwind call stack

address to be given control when the unwind is
complete

ou

ICK REFERENCE SUMMARY OF SYSTEM SERVICES

Update Section File on Disk

SUPDSEC inadr ,[retadr] ,[acmode] ,[updflg] ,[efn] ,[iosb]

inadr

retadr

acmode

updflg

efn

iosb
astadr

astprm

,[astadr] ,[astprm]

address of 2-longword array containing starting and
ending addresses of the pages to be potentially
written

address of 2-longword array to receive addresses of
the first and last page queued 1in the first I/0
request

access mode on behalf of which the service |is
performed

update indicator for read/write global sections
0 -> write all read/write pages in the section
1 -> write all pages modified by the caller

number of event flag to set when the section file |is
updated

address of quadword I/O status block
address of entry mask of an AST service routine

AST parameter to be passed to the AST service routine

Wait for Single Event Flag

SWAITFR

efn

Wake
SWAKE

pidadr

prcnam

Wait for Logic
SWFLAN
efn

mask

(

al

D

efn

event flag number to wait for

pidadr] , [prcnam]

address of process identification of process to be
awakened

address of name string descriptor of process to be
awakened

AND of Event Flags
efn ,mask
event flag number of any flag within the cluster

32-bit mask of flags that must be set

Wait for Logical OR of Event Flags

SWFLOR
efn

mask

efn ,mask
event flag number of any flag within the cluster

32-bit mask of flags, any of which must be set

INDEX

$SACCDEF macro,
process termination message
offsets, 43
symbols defined, 175
SADJSTK format, 3
$ADJWSL format, 5
SALLOC format, 7
SASCEFC format, 9
SASCTIM format, 12
SASSIGN format, 14
$BINTIM format, 17
$BRDCST format, 19
$CANCEL format, 21
$CANEXH format, 23
$CANTIM format, 24
SCANWAK format, 25
SCHFDEF macro, 9-7
SCLREF format, 27
$CMEXEC format, 28
SCMKRNL format, 29
$CNTREG format, 30
SCRELOG format, 32
SCREMBX format, 34
$CREPRC format, 38
SCRETVA format, 48
SCRMPSC format, 50
SDACEFC format, 58
SDALLOC format, 59
SDASSGN format, 61
$DCLAST format, 63
SDCLCMH format, 65
SDCLEXH format, A7
SDELLOG format, 69
$DELMBX format, 71
$DELPRC format, 73
SDELTVA format, 75
SDGBLSC format, 77
SDIBDEF macro,
symbols defined, 102
SDLCEFC format, 80
SEXIT format, 82
SEXPREG format, 83
$FAO format, 85
SFAOL format, 85
SFORCEX format, 98
$GETCHN format, 100
SGETDEV format, 103
SGETJPI format, 105
$GETMSG format, 113
$GETTIM format, 115
SHIBER format, 117
$INPUT macro,
example, 6-6
format, 119
$IODEF macro, 6-2
symbols defined, A-2 to A-8
$JBCMSGDEF macro, 176, 194 to 195

$SJPIDEF macro, 108
symbols defined, 110 to 112
SLCKPAG format, 120
SLKWSET format, 122
$MGBLSC format, 124
$MSGDEF macro, A-9
symbolic names defined A-9
$nameDEF macro, 2-6
$name_G form of system service
macro, 2-3
example, 2-3 to 2-4
$name_S form of system service
macro, 2-6
example, 2-7
SNUMTIM format, 128
$OPCDEF macro,
symbols defined, 180 to 184
SOUTPUT macro,
example, 6-6
format, 130
SPQLDEF macro, 44
symbols defined, 45 to 46
$PRDEF macro,
symbols defined, A-10
SPRTDEF macro, 162
symbols defined, A-11
$PRVDEF macro,
symbols defined, 39
SPSLDEF macro,
symbols defined, A-11
SPURGWS format, 131
$PUTMSG format, 132
$QI0 format, 138
SQIow,
S$INPUT and $OUTPUT forms 6-6
format, 142
SREADEF format, 144
SRESUME format, 145
SSCHDWK format, 147
SSECDEF macro, 51
symbols defined, 51,125
SSETAST format, 150
$SETEF format, 151
$SETEXV format, 152
SSETIME format, 154
SSETIMR format, 156
SSETPRA format, 158
SSETPRI format, 159
$SETPRN format, 161
SSETPRT format, 162
$SETPRV format, 164
SSETRWM format, 167
$SETSFM format, 169
SSETSWM format, 171
$SMRDEF macro, 188
symbols defined, 190 to 193
$SNDACC format, 172

Index-1

$SNDERR format, 177
$SNDOPR format, 178
$SNDSMB format, 185
$SSDEF macro, 2-11
symbols defined, A-12 to A-17

$SUSPND format, 196
STRNLOG format, 198
SULKPAG format, 200
SULWSET format, 202
SUNWIND format, 204
SUPDSEC format, 206
SWAITFR format, 209
SWAKE format, 210

SWFLAND format, 212
SWFLOR format, 213

A

Absolute time, 8-1
buffer format, 18
Access modes, 1-2
conventions for coding, 2-10
effect on AST delivery, 4-5
to 4-6
symbolic names defined, A-11
Accounting log file, 172
format of records, 174
ACP interface driver I1I/0
function codes, A-7
Addresses,
virtual, 10-1 to 10-4
Adjust Outer Mode Stack Pointer
($ADJSTK) system service, 3
Adjust Working Set LImit
(SADJWSL) system service,
5 to 6
increase working set size,
10-5
Allocate Device (SALLOC) system
service, 7 to 8
example, 6-11
Allocation,
device, 6-10 to 6-11, 7
Argument list, 2-2
for AST service routine, 4-4
for system services,
format, 2-2
passed to a condition hand-
ler, 9-8
Arguments,
conventions for high-level
language coding, 2-14 to
2-15
conventions for VAX-11 MACRO
coding, 2-7 to 2-10
Arrays,
argument lists for condition
handlers, 9-7 to 9-9
virtual address, 10-3 to 10-4

INDEX

ASSIGN command, 5-1
Assign I/0 Channel ($ASSIGN)
system service, 14 to 16
example, 6-2
Associate Common Event Flag
Cluster (SASCEFC) system
service, 9 to 11
examples, 3-4, 3-6 to 3-7
AST (asynchronous system trap),
4-1 to 4-2
declare, 63 to 64
example, 4-5
delivery, 4-5 to 4-6
disable/enable delivery, 150
execution,
access modes, 4-2
power recovery, 158
service routine, 4-4
example, 4-5
services,
general information, 4-1
summary, 1-5 to 1-6
synchronize I/0 completion,
6-3 to 6-4
used with timer services, 8-3
example, 8-5

Balance set, 10-6, 171
swapping, 10-6, 171

BASIC coding example, 2-30 to
2-31

BLISS-32 coding example, 2-24
to 2-25

Broadcast ($BRDCST) system
service, 19 to 20

C

Cancel Exit Handler ($SCANEXH)
system service, 7-14, 23
Cancel I/0 On Channel ($SCANCEL)

system service, 6-10, 21 to
22
example, 6-10
Cancel Timer Request ($CANTIM)
system service, 8-6, 24
example, 8-6
Cancel Wakeup ($CANWAK) system
service, 8-6 to 8-7, 25 to
26

cancel wakeup requests example,

8-6 to 8-7
Card reader driver I/0 function
codes, A-6

Index~2

Change mode,
handler, 9-4, 65 to 66
services,
summary, 1-19 to 1-20
to executive, 28
to kernel, 29
Change to Executive Mode
(SCMEXEC) system service,
28
Change to Kernel Mode ($CMKRNL)
system service, 29
Channel assignment, 6-1 to 6-2,
14 to 16
mailboxes, 34
Character string descriptor,
high-level language coding,
2-14 to 2-15
MACRO coding, 2-8 to 2-9
Checkpointing sections, 10-16
Clear Event Flag (SCLREF) system
service, 27
example, 3-4
Clusters,
event flag, 3-1 to 3-2
COBOL coding example, 2-22 to
2-23
Common event flag cluster, 3-4
to 3-5, 9 to 11
example of use, 3-5 to 3-7
for process communication, 7-9
in shared memory, 3-7 to 3-9
Compatibility mode handler,
9-4, A5 to 66
Condition handler, 9-1, 9-4
courses of action, 9-10
declare on call stack, 9-4
example of condition handling
routines, 9-10 to 9-12
search of call stack, 9-6
Condition-handling services,
general information, 9-1
summary, 1-15 to 1-16
Contract Program/Control Region
(SCNTREG) system service,
30 to 31
example, 10-3
Control block,
exit handler, 67
Control region, 10-1 to 10-2
contract, 30 to 31
expand, 10-2 to 10-3, 83 to 84
Control string,
FAO, 87
Conventions for coding,
access modes, 2-10
arguments to system services,
high-level languages, 2-14
to 2-15
MACRO, 2-7 to 2-10

INDEX

Convert ASCII String to Binary
Time ($BINTIM) system
service, 17 to 18

examples, 8-2, 8-3

Convert Binary Time to ASCII
String ($ASCTIM) system
service, 12 to 13

example, 8-2

Convert Binary Time to Numeric
Time (SNUMTIM) system
service, 128 to 129

CORAL coding example, 2-26 to
2-27

Create and Map Section (SCRMPSC)
system service, 50 to 57

example of mapping a section,
10-12

Create Logical Name ($SCRELOG)

system service, 32 to 33
example, 5-2

Create Mailbox and Assign
Channel (SCREMBX) system
service, 34 to 37

examples, 6-16 to 6-17, 7-19 to
7-20

Create Process (SCREPRC) system

service, 38 to 47
examples, 7-2, 7-3, 7-4, 7-7,
7-19 to 7-20

Create Virtual Address Space
(SCRETVA) system service,
48 to 49

D

Date,
system format, 8-1 to 8-2
Deallocate Device (SDALLOC)
system service, 6-12, 59
to 60
Deassign I/0 Channel ($DASSGN)
system service, 61 to 62
example, 6-11
Declare AST (SDCLAST) system
service, 63 to 64
example, 4-4 to 4-5
Declare Change Mode or Compati-
bility Mode Handler ($DCLCMH)
system service, 65 to 66
Declare Exit Handler (SDCLEXH)
system service, 67 to 68
example, 7-15
Default,
arguments for system
services, 2-8
device names, 6-12 to 6-13
disk and directory for
created process, 7-4 to
7-5

Index-3

Delete Common Event Flag
Cluster (SDLCEFC) system
service, 80 to 81

Delete Global Section ($DGBLSC)
system service,

77 to 79

Delete Logical Name (SDELLOG)
system service,
69 to 70

Delete Mailbox ($SDELMBX) system
service, 71 to 72

Delete Process (SDELPRC) system
service, 7-16, 73 to 74

Delete Virtual Address Space
($SDELTVA) system service,

75 to 76
example, 10-3
Delete,

common event flag clusters,
3-5, 80 to 81
mailboxes, 6-15, 71 to 72
processes, 7-16 to 7-17, 73
to 74
timer requests, 8-6, 24
virtual address space, 10-3,
75 to 76
Delivery,
AST, 4-5 to 4-6
enable/disable, 150
Delta time, 8-1
how to specify, 8-3
Descriptor,
high-level language coding,
2-14 to 2-15
MACRO coding, 2-8 to 2-9
Detached process, 7-6
compared with subprocess,
7-1
Device,
allocate, 6-10 to 6-11, 7 to 8
assign I/0 channel, 6-2, 14
to 16
deallocate, 6-12, 59 to 60
information, 100 to 105
names, 6-12 to 6-13
physical names vs. logical
names, 6-12
Directive (FAO),
format, 86 to 87
summary, 88 to 89
Disassociate Common Event Flag
Cluster ($SDACEFC) system
service, 58
example, 3-6 to 3-7
Disk driver I/0 function codes,
A-4
Dispatcher,
exception, 9-5
DMC11l driver I/0 function codes,
A-7

INDEX

Equivalence names, 5-1 to 5-2
Error,
cause exception condition,
9-1 to 9-2
checking,
high-level languages, 2-15
to 2-17
MACRO, 2-11 to 2-12
logger,
send message to, 177
messages,
obtain text, 113 to 115
output, 132 to 137
return status codes, 2-11,
2-15 to 2-16,
listing, A-12 to A-17
stream defined for process,
7-3 to 7-4
Event flag, 3-1 to 3-2
clearing, 27
clusters, 3-1 to 3-2
common clusters, 3-1 to 3-2,
3-4 to 3-5 ’
associate, 3-4 to 3-5, 9 to 11
create, 3-4 to 3-5, 9 to 11
delete, 3-5, 80 to 81
disassociate, 3-5, 58
in shared memory, 3-7 to 3-9
read status of, 144
services,
general information, 3-1
summary, 1-3 to 1-5
setting, 3-1 to 3-2, 151
used with I/0O services, 6-3
used with timer services,
8-3 to 8-4
waits, 3-3, 4-3
Exception, 9-1
caused by system service
failure, 9-1 to 9-2, 169 to 170
conditions, 9-1 to 9-2
summary, 9-2 to 9-3
dispatcher, 9-5 to 9-6
vectors, 9-4, 152 to 153
Exit (SEXIT) system service,
7-14, 82
Exit,
forced, 7-15, 98 to 99
handler, 7-14 to 7-15, 67 to 68

cancel, 7-14, 23
control block format, 67
declare, 67 to 68
example, 3-50
image exit, 7-12 to 7-13
Expand Program/Control Region
(SEXPREG) system service
10-2 to 10~-3, 83 to 84
example, 10-3

Index-4

F

FAO, 6-14 to 6-15
control string, 87
directives,
examples, 91 to 97
format, 86 to 87
summary, 88 to 89
Force Exit ($FORCEX) system
service, 7-15, 98 to 99
contrast with process
deletion, 7-17
Formatted ASCII Output (SFAO0)
system service, 85 to 97
examples, 6-14 to 6-15, 91 to
97
Formatted ASCII Output with
List Parameter (SFAOL)
macro, 85 to 86
examples, 93 to 94, 95
FORTRAN coding example, 2-20
to 2-21
Function codes for I/0 opera-
tions, 6-2
summary, A-2 to A-8

G

Get I/0 Channel Information
(SGETCHN) system service,
100 to 102
example, 7-19 to 7-20
Get I/0 Device Information
($SGETDEV) system service,
103 to 104
Get Job/Process Information
(SGETJPI) system service,
105 to 112
used for process control, 7-8
wildcard searching, 107
Get Message (SGETMSG) system
service, 113 to 115
Get Time (SGETTIM) system
service, 8-2, 116
Global sections,
creating, 10-7 to 10-11, 50 to
57
defined, 10-7
deleting, 10-16, 77 to 79
group and system, 10-9
mapping, 10-13 to 10-14, 50,
124 to 127
name format, 10-10 to 10-11
in shared memory, 10-10 to
10-11
temporary and permanent, 10-9
Group,
logical name table, 5-2 to 5-4
number,

INDEX

Group, (Cont.)
qualify process names, 7-8
restrict system service use,
1-2

H

Handler,
change mode, 9-4, 65 to 66
compatibility mode, 9-4, 65 to 66
condition, 9-1, 9-4
exit, 7-14 to 7-15, 67 to 68
cancel, 7-14, 23
Hibernate ($HIBER) system
service, 7-9 to 7-11, 117
to 118
example, 7-11
Hibernation, 7-9 to 7-12
compared with suspension,
7-10
with scheduled wakeup, 8-6
High-level language coding, 2-14
to 2-18
examples, 2-18 to 2-31

1/0,
$QI0 system service, 6-2, 138
to 141
$QIOW system service, 6-6, 142
to 143
cancel, 6-10, 21 to 22
channels,

assign, 6-1 to 6-2, 14 to 16
deassign, 61 to 62

obtain information, 100 to 102

device,

obtain information, 103-104
example (terminal), 6-7 to 6-9
function codes,

how used, 6-2

summary, A-2 to A-8
mailboxes,

example, 6-16 to 6-17
services,

general information, 6A-1

summary, 1-7 to 1-10
status block, 6-5 to 6-6, 140

Image,

exit, 7-12 to 7-13, 82

compared with process

deletion, 7-16

exit handlers, 7-14 to 7-15

forced 7-15, 7-17, 98 to 99
force exit, 7-15, 7-17, 98

to 99

rundown, 7-13

Index-5

INDEX

Indicators,

conventions for coding,
2-14

2-10,

Input,

stream defined for process,
7-3

terminal 1/0, 6-7 to 6-9

virtual blocks, 119

SINPUT macro, 6-6, 119

L

Line printer driver I/0

function codes, A-6

Lock Pages in Memory (SLCKPAG)

system service, 120 to 121

Lock Pages in Working Set

(SLKWSET)
122 to 123
increase program efficiency,
10-5 to 10-6

system service,

Lock pages,

memory, 10-6, 120 to 121
working set, 10-5, to 10-5,
122 to 123

Logical names,

create, 5-1 to 5-2,
example, 5-2
delete, 5-6, 69 to 70
process permanent files, 5-6
services,
general information, 5-1

32 to 33

summary, 1-6 to 1-7
tables, 5-2 to 5-4
example, 5-3 to 5-4
translation, 5-4 to 5-5, 198
to 199
common event flag cluster
names, 3-8 to 3-9
global section names, 10-10
to 10-11

mailbox names, 6-17 to 6-19
used by I/0 services, 6-12 to 6-13
used for process communica-

tion, 7-9

MA780 memory (see "Shared

memory")

Magnetic tape driver I/0

function codes, A-5

Mailbox driver I/0 function

codes, A-6

Mailboxes,

creating, 6-15, 34 to 37
deleting, 71 to 72

Mailboxes, (Cont.)
example of creation and I/0
6-16 to 6-17
name format, 6-17 to 6-19
in shared memory, 6-17 to 6-19
system, 6-19
used for process communica-
tion, 7-9
used for process termination
message, 6-19, 7-18 to
7-20
Map Global Section ($MGBLSC)

system service, 10-13,
124 to 126
example, 10-14
Mapping,
global sections, 10-13 to

10-14, 50, 124 to 127
sections, 10-7, 10-11
Maximize access mode,
definition, 2-10
Memory,
lock pages in memory, 10-6,
120 to 121
management services,
general information, 10-1
summary, 1-16 to 1-19
unlock pages, 10-6, 200 to 201
Messages, ‘
associated with system status

codes, 2-11, 2-15 to 2-16,
A-12 to A-17
output, 132 to 137
Multiport memory (See "Shared
memory")

NARGS, 2-5
Numeric time buffer format,
128

(o)

Open,
disk file for use as a
section, 10-8
Operator,
send message to,
Output,
format for character strings,
6-14 to 6-15, 85
formatting with $FAO, 6-14
to 6-15, 85 to 97
stream defined for process,
7-3 to 7-4
system messages, 132 to 137
virtual blocks, 130

178 to 184

Index-6

INDEX

$OUTPUT macro, 6-6, 130
Owner,
of memory page, 10-4 to 10-5

P

Page,
copy-on-reference, 10-15
define in section 10-9
demand-zero, 10-15
define in section, 10-9
lock in memory, 120 to 121
lock in working set, 122 to
123
protection,
set or change, 162 to 163
symbolic names, A-11
Page frame number (PFN) map-
ping, 10-17
Page frame sections, 10-17
Paging,
sections, 10-15
working set, 10-5 to 10-6
Parameter,
FAO, 87
for AST service routine, 4-4
PASCAL coding example, 2-28
to 2-29
PFN mapping, 10-17
Print queue,
manipulate, 185 to 195
Priority,
set or change process, 159
to 160
Private sections, 10-7
creating and mapping, 50 to 57
Privilege,
defined by access mode, 1-2
defined for process, 7-5, 164
to 165
list of privilege bits, 39
masks, 165
required for process control,
7-6
set or change process, 164
to 165
to use system services, 1-1
Process,
control services,
general information, 7-1
summary, 1-10 to 1-13
creation, 38 to 47
examples, 7-2, 7-3, 7-4, 7-7,
7-19 to 7-20
deletion, 7-16 to 7-17, 73 to
74
compared with image exit,
7-16 to 7-17
detached process, 7-1

Process, (Cont.)
identification, 7-6 to 7-8
logical name table, 5-2 to 5-4
name, 7-7 to 7-8

qualified by group number,
7-8
set or change, 161
obtain information, 105 to 112
permanent files, 5-6
resume after suspension,
7-9, 7-12, 145 to 146
set or change priority, 159
to 160
subprocess, 7-1, 7-2 to 7-4
suspend, 7-9, 7-12, 196
to 197
termination message format,
43

Processor registers,
symbolic names, A-10

Processor status longword,
symbolic field definitions,

A-11

Program examples, B-1 to B-19

Program region, 7-1 to 7-2
contract, 10-2 to 10-3,

30 to 31
example of expanding, 10-2
expand, 10-2 to 10-3, 83 to
84

Protection,
page, 162 to 163

Purge Working ($SPURGWS) system

service, 131
Put Message (SPUTMSG) system
service, 132 to 137

Q

Queue I/0 Request ($QIO) system
service, 6-2, 138 to 141

Queue I/0 Request and Wait for
Event Flag ($SQIOW) system
service, 6-6, 142 to 143

Quotas, 1-1 to 1-2, 39, 44 to 47

R

Read Event Flags (SREADEF)
system service, 144
Resource,
quotas, 1-1 to 1-2, 39, 44 to
47
wait mode, 2-13, 2-17
set or change, 167 to 168
Resume Process ($SRESUME) system
service, 7-9, 7-12, 145 to
146

Index-7

INDEX

Return status codes,
high-level language coding,
2-15 to 2-16
MACRO coding, 2-11 to 2-12
obtain system messages, 113
to 115
summary, A-12 to A-17
RMS (Record Management Services),
6-1
open file for mapping, 10-8

S

Sample programs B-1 to B-19
Schedule Wakeup ($SCHDWK)
system service, 8-6, 147
to 149
cancel wakeups, 8-6 to 8-7,
25 to 26
examples, 8-6, 8-7
Search of call stack,
exception dispatcher, 9-5
to 9-6
Sections, 10-6 to 10-17
checkpoint, 10-16, 206 to 208
creating, 10-7 to 10-11, 50
to 57
defining extents, 10-8
to 10-9
deleting, 10-16
examples, 10-8, 10-12
global,
deleting, 10-16, 77 to 79
mapping, 3-87, 4-111
mapping, 10-3 to 10-14, 50,
124 to 127
page frame, 10-17
paging, 10-15
private, 10-7
unmapping, 10-16
using to share data, 10-15
Send Message to Accounting
Manager ($SNDACC) system
service, 172 to 176
Send Message to Error Logger
(SSNDERR) system service, °
177
Send Message to Operator
($SNDOPR) system service,
178 to 184
Send Message to Symbiont
Manager ($SNDSMB) system
service, 185 to 195
Service routine,
AST, 4-4 to 4-5
Set AST Enable ($SSETAST) system
service, 150
Set Event Flag ($SSETEF) system
service, 3-3 to 3-4, 151

Set Exception Vector (SSETEXV)
system service, 9-4, 152
to 153
Set Power Recovery AST ($SETPRA)
system service, 158
Set Priority (SSETPRI) system
service 157 to 160
Set Privileges (SSETPRV)
system service, 164 to 1466
Set Process Name (S$SETPRN)
system service, 161
Set Process Swap Mode (SSETSWM)
system service, 10-5, 171
example, 10-6
Set Protection on Pages
($SETPRT) system service,
162 to 163
Set Resource Wait Mode ($SSETRWM)
system service, 2-13, 2-17
167 to 168
Set System Service Failure
Exception Mode (SSETSFM)
system service, 2-13, 2-17
to 2-18, 169 to 170
example, 2-13
Set System Time (SSETIME) system
service, 8-7 to 8-8, 154 to
155
example, 8-8
Set Timer ($SETIMR) system
service, 8-3 to 8-5, 156 to
157
examples with AST, 4-2, 8-5
examples with event flag,
3-2, 8-4
Shared (multiport) memory,
common event flag clusters, 3-7
to 3-9
global sections, 10-10 to 10-11
mailboxes, 6-17 to 6-19
Stack pointer,
modifying, 3
Subprocess, 7-1, 7-2 to 7-4
deletion, 7-16
example of creating, 7-2
Suspend Process ($SSUSPND)
system service, 7-9, 7-12
196 to 197
Suspension, 7-9, 7-12, 196 to 197
compared with hibernation, 7-10
Swap mode,
disable or enable, 10-6, 171
Swapping, 10-6
disallow process swapping,
10-4, 171
process from balance set,
10-6
Symbiont manager,
format of messages, 188 to 189
send message to, 185 to 195

Index-8

Symbolic names, 2-11, 2-16
obtain numeric values, A-2
page protection, A-1l1
processor registers, A-10
system status codes,

summary, A-12 to A-17
use in error checking, 2-11,

2-16
Synchronize I/0 completion, 6-3
to 6-5
System logical name table, 5-2
to 5-4

System service failure exception
mode, 2-13, 2-16 to 2-17,
9-1 to 9-2
set or change, 169 to 170
System time,
format, 8-1 to 8-2
setting, 8-7 to 8-8, 154 to
155

T

Table,
logical name, 5-2 to 5-4
Terminal driver I/0 function
codes, A-3
Terminal,
assign channel, 6-2
broadcast messages to, 19 to
20
I/0 example, 6-7 to 6-9
Termination mailbox, 6-19, 7-18
to 7-20
example, 7-19 to 7-20
message format, 43
Time,

ASCII format, 13, 18
absolute time buffer, 18
SASCTIM, 12 to 13

convert to ASCII, 8-2, 12 to

13
convert to binary, 8-2 to 8-3
17 to 18

convert to binary integer
values, 8-7
buffer format, 128
set system time, 8-7 to 8-8,
154 to 155
system format, 8-1 to 8-2
obtain, 8-2, 116
Timer and time conversion
services,
general information, 8-1
summary, 1-13 to 1-15
Timer requests, 8-3 to 8-6
cancel, 8-6, 24
setting, 156 to 157

INDEX

Translate Logical Name (STRNLOG)
system service, 5-4 to 5-6,
198 to 199
examples, 2-20 to 2-31, 5-5
Translate,
logical name, 5-4 to 5-6,
198 to 199

U

Unlock Pages from Memory
(SULKPAG) system service,
200 to 201

Unlock Pages from Working Set
(SULWSET) system service
202 to 203

Unwind Call Stack (SUNWIND)
system service, 9-12 to
9-13, 204 to 205

example, 9-13

Unwinding the call stack,
9-12 to 9-13, 204 to 205

Update Section File on Disk
(SUPDSEC) system service,
10-16, 206 to 208

User privileges, 1-1, 39

\'

VAX-11 BASIC coding example,
2-30 to 2-31
VAX-11 BLISS-32 coding example,
2-24 to 2-25
VAX-11 COBOL-74 coding example,
2-22 to 2-23
VAX-11 CORAL coding example,
2-26 to 2-27
VAX-11 FORTRAN coding example,
2-20 to 2-21
VAX-11 MACRO,
coding system service calls,
$name macro, 2-3 to 2-4
$name_G form, 2-3
$name_S form, 2-6
VAX-11 PASCAL coding example,
2-28 to 2-29
Virtual address space,
add and delete addresses, 10-2
to 10-3
add pages, 48 to 49, 83 to 84
delete pages, 30 to 31, 75 to
76

layout, 10-1 to 10-2

mapping sections in 10-11 to
10-14

specifying arrays, 10-3 to
10-4

Index-9

w

Wait for Logical AND of Event
Flags (SWFLAND) system
service, 3-3, 212

examples, 3-3, 3-6

Wait for Logical OR of Event
Flags (SWFLOR) system
service, 3-3, 212

Wait for Single Event Flag
(SWAITFR) system service,
3-3, 209

example, 3-6
Wait,
event flag, 3-3
I1/0, 6-6
resource wait mode, 2-13, 2-17
set or change, 167 to 168

INDEX

Wake (SWAKE) system service,
7-10, 210 to 211
example, 7-11
Wakeup a hibernating process,
7-10 to 7-11, 210 to 211
timer scheduled, 8-6, 147 to
149
cancel, 8-6 to 8-7
Wildcard process searching, 107
Working set, 10-5 to 10-6
lock pages, 10-5 to 10-6,
122 to 123
paging, 10-5 to 10-6
purge, 10-5, 131
size,
changing, 10-5, 5 to 6
unlock pages, 10-5 to 10-6,
202 to 203

Index-10

VAX/VMS

System Services
Reference Manual
AA-DO18B-TE

READER'S COMMENTS

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. If you require a written reply and are
eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR
form.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the
page number. ’

Please cut along this line.

Please indicate the type of reader that you most nearly represent.

Assembly language programmer

High-level language programmer
Occasional programmer (experienced)
User with little programming experience
Student programmer

Oogoog

Other (please specify)

Name Date

Organization

Street

City State Zip Code
. or
Country

- — -— — DoNot Tear- Fold HereandTapg — — — — — — — — — — — — — — — — —_—— o =

No Postage |

Necessary |
if Mailed in the | |
United States

[e
BUSINESS REPLY MAIL —
TR
[]

FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

BSSG PUBLICATIONS TW/A14
DIGITAL EQUIPMENT CORPORATION
1925 ANDOVER STREET

TEWKSBURY, MASSACHUSETTS 01876

- —_ Do Not Tear- FoldHere @~ @~ — — — — — — — — — — — — — — — —

